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Preface 

In January-February 1991 I had an opportunity to deliver lectures on multicri­
teria optimization at a number of American companies and universities. The 
contacts with the people working for the companies, as well as discussions with 
renowned experts in the field (Dr. W. Stadler, Dr. V. Ozernoy, Dr. E. Lieberman, 
et al.) convinced me that it would be worthwhile to write a book for the American 
audience. Although optimization has been dealt with in numerous books and 
papers of varying excellence. I was dissatisfied that the results of solving engi­
neering optimization problems were not much more impressive. The more so, 
since there exist quite a number of first-rate optimization methods. 

In solving optimization problems it is usually assumed that the problem has 
already been formulated, and one has only to find its solution. Actually, this is 
not the case for the majority of engineering problems. Even if one has at his 
disposal an adequate mathematical model, which is a rare occasion, this does 
not guarantee success. In problems involving conflicting criteria, which are most 
typical for engineering applications, the designer encounters objective difficulties 
in formulating constraints imposed on design variables and performance criteria. 
However, these constraints are just those determining to a considerable extent 
a set of feasible solutions that satisfy all necessary requirements to the object 
under design. Without constructing this set all further efforts to optimize the 
solution to a real problem often prove to be futile. 

Both the book and the problems considered in it have been brought to life by 
the practical significance of the problems under consideration, which form a 
considerable part of the book. Though quite diverse, all the problems have one 
feature in common-to solve them one must first find the feasible solutions set. 

Central to the book is the parameter (design-variable) space investigation (PSI) 
method, which has been brought to life by the necessity of correct statement and 
solution of engineering problems of optimization. 

The multicriteria approach allows us to interprete in a new fashion many well-

vii 
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known and important problems such as identification and operational development 
of prototypes designed for batch and mass production, and to develop new 
methods for their solution. 

The problems considered in this book are perennial problems for engineers, 
designers, and analysts engaged in creating various machines, mechanisms, 
structures, and devices. 

At present, the PSI method is efficiently used in many areas of human activity. 
This book acquaints the Western reader with some practical results of its appli­
cation. 

We live in the vast world of real multicriteria problems. Previously, we were 
taught to see it in the single-criterion dimension, and, hence, in a distorted form. 
However, it is no exaggeration to state that the world must be seen as it really 
is since this is very important for our lives. 

Long ago I was invited to Central Asia to deliver popular lectures. When 
speaking in Tashkent, Uzbekistan, I noticed a dozing old man very much like 
a traditional Eastern sage. He wore a turban and sat completely motionless with 
shut eyes. I was speaking about decision-making problems and presented an 
example. "Suppose five brides are presented to you and you are asked to choose 
the best one," said I. Imagine my surprise when the man approached me after 
the lecture and said: "I think nobody, save Allah, knows how to do this, since 
otherwise people wouldn't behave so foolishly. But the very question is why do 
you think that one has to choose among the presented women, not among 
some others?" In a single sentence the man managed to condense the extreme 
importance of the problem of obtaining feasible solutions. 

Before us my coauthor and I have the attentive, interested, and benevolent 
audience. We were eager to write this book for you and hope that it will not be 
read in vain, but will help designers in their work. 

R. Statnikov 



www.manaraa.com

Introduction 

Optimization in Engineering Problems 

The majority of engineering problems are essentially multicriteria. In designing 
machine tools, airplanes, automobiles, ships, and locomotives we do our best 
to increase their productivity, strength, reliability, longevity, efficiency, and 
utilization factor. At the same time we try to decrease vibration and noise, 
production and maintenance costs, the number of failures, material and fuel 
consumption, overall dimensions, etc. As a rule, different performance criteria 
of an engineering system are conflicting in the sense that improvement in some 
of them results in deterioration in some others. 

At present, the annual world production reaches dozens of millions of diverse 
machines, mechanisms, structures, robots and manipulators, automatic transfer 
lines, as well as unique expensive objects, such as nuclear power stations and 
spacecrafts. 

In order to create competitive objects one has to use up-to-date technology, 
materials, equipment, microprocessors, etc. However, the work still starts with 
the design, which is one of the most important links in the tedious process of 
creation of modem machines and machine systems. Clearly a superior machine 
cannot be created on the basis of a second-rate design. Also, since the fleet of 
machines is to be renovated in no more than five to seven years, a design must 
be not only optimal but accomplished in the shortest time measured in several 
months. However, a preliminary design often foresees excessive material con­
sumption, dangerous noise levels, high vibration activity, low reliability, inade­
quate longevity and strength, all resulting in premature failures, emergency 
situations, excessive energy consumption, unacceptable pollution of the environ­
ment, and rapid exhaustion of natural resources. This is due to the fact that 
optimization has not yet become a technical policy. To confirm the validity of 
this statement it suffices to say that optimization of structural parameters of batch 
and mass-production machines may result in decreasing the energy and material 
consumption by no less than 15%, and lowering the cost by 20%. This makes 

ix 
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optimization, considered as a technical policy, an objective necessity caused by 
a dramatic sharp increase in machinery production in the last 40--50 years. 

About 20-30 years ago the methods of nonlinear programming suddenly be­
came very popular. Many works were published in which the problems of optimal 
design were essentially reduced to traditional problems of optimization. The 
hope was that the epoch of total optimization had finally come, and plants would 
soon start manufacturing optimal automobiles and machine tools. However; soon 
the hopes faded and were replaced by disillusion, since the results of using 
mathematical methods of optimization in solving engineering problems proved 
to be ridiculously insignificant: "the mountain brought forth a mouse," despite 
the fact that plenty of first-rate methods of optimization have been developed. 

A careful analysis of the majority of solved engineering problems has shown 
that, considered as problems of optimization, they have been ill-posed. In order 
to treat a patient one must first diagnose the disease correctly. This is why one 
of the main issues to be discussed in this book is the correct formulation of 
multicriteria optimization problems. 

Traditionally, any problem is divided into two phases: formulation and solu­
tion. First, one poses a problem and then solves it with the help of a computer. 
However, for engineering optimization problems this primitive scheme is im­
proper, and the designer cannot, as a rule, formulate a problem correctly prior 
to its solution. Actually, he solves the problem, analyzes the results, corrects 
the formulation, and solves the problem again, his way to the truth being a 
complicated spiral line. This is a multiply repeated, cyclic process of "formula­
tion-solution-analysis-correction-... " typical for the majority of engineering 
problems of optimization. 

Note that ill-posedness of an engineering optimization problem may be caused 
by more than just the use of an inadequate mathematical model. Quite often an 
optimization problem proves to be ill-posed though the mathematical model is 
all right. Also, though designers usually pay considerable attention to constructing 
an adequate mathematical model, the issues of formulating the problem of optimi­
zation (which actually lie in the "boundary layer" between the traditional spheres 
of interest of pure and applied mathematicians) are presently the least investigated 
ones. 

Broad experience in solving problems has shown that the time needed to 
formulate a problem makes up 70-85% of the total time required for a complete 
treatment, from the formulation to results. Often the initial formulation has little 
in common with the final one, which is followed by the search for an optimal 
solution. 

The life cycle of a complex technological system such as a machine includes 
the following stages: the development of the request for proposal and specifica­
tion, design (subdivided into several phases), manufacture, the tests and opera­
tional development of a prototype, quantity production, and exploitation. 
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At each stage one encounters many diverse problems. Accordingly, we con­
sider the following two extensive classes of problems. 

1. Multicriteria optimization of complex objects. Successful optimization 
depends, in tum, on solving the following problems. 

Determination of feasible solutions set and Pareto optimal set. Let 
us ask ourselves how many design solutions of a machining center, an 
automobile, or a ship are considered before choosing the single one that 
is to be put into quantity production? The answer is: not many. The 
result is that we have to seek the optimal solution among a few candidates 
that often are far from being the best ones. In reality, there exists the 
so-called feasible solutions set which comprise all solutions meeting all 
the requirements to the future machine. Determination of such a set is 
one of the major problems of optimal design because nobody can guaran­
tee that even a talented and experienced designer will be able to find 
the best solution, operating with a small number of candidates only, and 
without determining the feasible solutions set. Hence, the traditional 
approach does not guarantee obtaining the optimal design. Thus, to 
create competitive machines one must be able to construct the feasible 
solutions set. The problem is how to help the designer do this. In solving 
multi variable problems with conflicting criteria, the construction of the 
set proves sometimes to be a difficult task even for an experienced and 
highly skilled designer. 

A feasible solutions set incorporates a subset of unimprovable, or the 
so-called Pareto optimal l , design solutions which cannot be improved in 
all the performance criteria simultaneously. Clearly, the ultimate design 
solution must necessarily be Pareto optimal. That is why it is so important 
to be able to construct and analyze the Pareto optimal set. Especially 
difficult is the task of approximately constructing the feasible solutions 
set and Pareto optimal set to a given accuracy. Though the problem is 
under study for a rather long time, the complete solution has not yet 
been obtained. In this book, we propose solutions based on sufficiently 
simple assumptions concerning the properties of performance criteria. 

2. Problems of multicriteria identification. Usually, identification of an 
object is defined as the construction of its mathematical model and 
determination of the latter's design variables, based on the analysis of 
the object's responses to known external disturbances. In contrast to 
conventional (scalar) identification, we use the ensemble (vector) of 
proximity (closeness, adequacy) criteria, characterizing the discrepancies 

lWilfredo Pareto (1848-1923) was a well-known Italian economist and sociologist. 
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between the corresponding characteristics of a mathematical model and 
the full-scale experiment. 

Multicriteria identification is an important fundamental and applied problem 
one has to deal with in any area where theoretical and experimental results have 
to be matched. 

When optimizing the parameters of some model, we tacitly suppose that the 
model is adequate and the results obtained on its basis are reliable. If the optimiza­
tion results turn out to be not of practical significance, one possible cause may 
be the inadequacy of the mathematical model. In this connection the Eastern 
proverb "One can't pour out of a jug more than it contains" should be kept in 
mind. Hence, it is important that the models under consideration adequately 
describe real objects. One must be aware of the mathematical models' advantages 
and drawbacks. 

A solution to the problem of multicriteria identification must allow determina­
tion of the "sphere of applicability" of the mathematical model, evaluation of 
expediency of its further development, accuracy, completeness, and trustworthi­
ness of the results, as well as correction of the variable boundaries and verification 
of the list of performance criteria for further solution of optimization problems. 

The method of muticriteria identification proposed in this work allows solution 
of an important applied problem of operational development (improvement) of 
prototypes. The significance of the problem is stressed by the fact that the cost 
of operational development is often commensurate with that of the creation of 
a new machine. 

The problems of operational development are solved in two stages: First, the 
problem of multicriteria identification is solved, and then the problem of optimiz­
ing the performance criteria of the object subjected to improvement, is considered. 

In the late 1960s, when it became clear that the vast number of optimization 
methods had practically no effect on the quality of designed objects, we started 
the development of the conception, methods, and algorithms for formulating and 
solving the problems of optimization of complex technological objects. 

The efforts were crowned by the creation of the parameter (design-variable) 
space investigation (PSI) method, which is central to this book. The PSI method 
was created by Sobol' and Statnikov (see, e.g., Statnikov (1978) and Sobol' and 
Statnikov (1981)). Primarily, the method is aimed at the formulation and solution 
of the problem of determination of the feasible solutions set. In this sense, the 
method has no analogue. In creating the method we did our best to take into 
account the specific features of designers' thinking and behavior. Of course, the 
optimal solution to a highly complicated multicriteria problem cannot be found 
in the automatic mode. In the case under consideration the search scenario is 
based on the designer-computer dialogues. Later, the PSI method was used as 
a basis for developing the methods for approximating the feasible solutions set and 
Pareto optimal set, multicriteria identification, decomposition and aggregation of 
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large-scale systems, and the estimation of criteria sensitivity to design variable 
alteration. 

Practical results obtained on the basis of the PSI method have been tested at 
a number of major enterprises. 

We were aware of the uniqueness and large scale of this extensive experiment 
and thought that it must be within the reach of the designers engaged in the 
search for optimal solutions of engineering problems. This is demonstrated by 
numerous examples whose authors have kindly proposed them for publication 
in this book. 

The PSI method finds numerous applications in design practice in Russia and 
former USSR republics. It was efficiently used in geophysics and pharmacy, 
fiber and nonlinear optics, nuclear power and technology, petrophysics, and 
other fields in which complex multicriteria problems were present. At present, 
the boundaries of the sphere of its application may hardly be drawn. 

The book generalizes our personal and professional experience, and we hope 
it will be helpful to the reader. 

Today, as well as long ago, many designers rely, for some reasons, only on 
their personal experience, intuition, and luck. Of course, all means are good for 
attaining good objectives, the more so, "victors are not judged." However, we 
could give numerous, notorious examples when even gifted, acclaimed designers 
have failed to find the best solutions without using the methods of multicriteria 
optimization. What, then, is to be said about rank-and-file designers? 

In solving an engineering problem, of special interest is the designer's thought 
flow, reasoning, and use of the PSI method. 

That is why in considering a number of examples we tried, as much as possible, 
to convey those considerations that resulted in an alteration of the initial problem 
formulation and substantiation of a new one. 

In selecting the examples for the book we tried to find those that are instructive 
from the viewpoint of methodology. 

Special attention is paid to multicriteria optimization of objects by using finite 
element models. This is done not only because the problems are of extreme 
practical importance and their solution guarantees huge economic gains, but 
primarily because the PSI method allows, for the first time, revelation and 
evaluation of the entire diversity of geometrical shapes of the object under study 
(or being designed). In tum, this allows approaching the solution of problems 
with unformalizable criteria for the choice of the best production technology. 

In brief, we wished to show life in its genuine form, and this has predetermined 
the form of the book. We aimed to describe the process of formulation and 
solution of the problem of the feasible solutions set determination, despite the 
diverse nature of problems under consideration. However, the major objective 
was to demonstrate the single conception of analysis on the basis of the PSI 
method. We shall be thankful for the reader's patience in getting acquainted with 
all the examples presented in this book, which are predominantly of methodologi-
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cal character. By presenting so much factual material we wanted, as much as 
possible, to make our concept of multicriteria analysis accessible and understand­
able for everyone who is going to solve analogous problems. 

Alongside with introducing the new approach to finding optimal solutions at 
numerous enterprises, we delivered the "Multicriteria Machines Design" course 
of lectures in many countries. This book is addressed to a wide audience, from 
undergraduate students to researchers and engineers; actually, to everyone en­
gaged in solving engineering optimization problems. 

Since this is one of the first works on the study of engineering multicriteria 
problems, we are well aware that it has not yet acquired its final perfect form, 
and we tried, therefore, to avoid making categorical conclusions. 

In mass and batch manufacture of machines and mechanisms that involve 
enormous material resources and where the cost of an error (the loss of markets, 
incompetitiveness of products, premature failures, and emergency situations) is 
rather high, multicriteria optimization grows into an objective necessity. 

The PSI method has been realized in the form of the multicriteria optimization 
and vector (multicriteria) identification (MOVI) programs package created with 
the invaluable contribution of Mr. Y. Y. Uzvolok. This is the package that has 
been used for solving numerous problems of multicriteria optimization. 

We thank Mr. Mikhail M. Tsipenyuk, who has done much favoring the 
publication of this book. We appreciate Mrs. Nelya B. Statnikova, who helped 
us in our contacts with the Publishers and Mr. LeRoy M. Lefkowitz who organized 
Dr. R. B. Statnikov's tour in the US for delivering lectures on the PSI method. 

Especially we are grateful to Dr. Wolfram Stadler, Dr. Vladimir M. Ozernoy 
and Dr. Ralph Steuer for their kind attitude and valuable advice, which added 
much to the book. 

We are thankful to all our colleagues who helped us when preparing the 
manuscript of this monograph. We want to mention here Dr.I.S. Yenyukovand 
Dr. L.Y. Banach, who participated in the work on Sections 5-1 and 5-4, 
respectively, as well as Mr. G.I. Firsov, Dr. E.M. Stolyarova, and Dr. N.N. 
Bolotnik who discussed with us different issues related to the scope of the 
book. Especially helpful were Mr. Y.Y. Uzvolok, Mr. V.S. Shenfeld, Mr. Y.S. 
Yuzhakov, Mr. A.A. Pozhalostin, and Mrs. O.A. Frolova, our colleagues from 
the Laboratory of Theory and Methods of Optimal Design of Russian Academy 
of Sciences of the Mechanical Engineering Research Institute. 

Different people look at optimization from different points of view: mathemati­
cal, philosophical, political, pragmatic, etc. Optimization has many faces, but 
it is always aimed at reaching perfection. That is why we consider this book a 
path to finding sound engineering solutions. 

The history of science shows that the paths to the truth are multitudinous. 
Here we have described one of them. Said Montenne: "The truth is so great a 
thing that we must not ignore any way leading to it." We agree. 
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Multicriteria Optimization and the 
Parameter Space Investigation Method 

1-1. Engineering Optimization Problems: Their Features and 
Formulation 

First of all, we will outline a class of problems to be solved. In doing this, we 
will rely on the experience accumulated while solving numerous engineering 
optimization problems, the problems of design included. This enables us to 
cover a sufficiently wide class of problems encountered in different applications, 
especially in engineering. There are a number of features inherent in the class 
of the problems under consideration that predetermine both their formulation and 
approaches to their solution. 

Let us enumerate some basic features of the problems to be considered. 

1. The problems are essentially multicriteria. As a rule, attempts are made 
to reduce multicriteria problems to single-criterion ones. For example, 
productivity of a machine is undoubtedly an important index. However, 
should one always try to make it maximum? Besides, the single-criterion 
formulation of a problem ignores such questions of paramount signifi­
cance as: What is the cost of the maximum productivity? How much 
does it deteriorate other performance criteria? Why is one criterion pre­
ferred over other ones? 

Numerous attempts to construct a generalized criterion in the form of 
combination of particular criteria proved to be fruitless. 

By cramming a multicriteria problem into the Procrustean bed of a 
single-criterion one, we replace the initial problem with a different one 
that has little in common with the original problem. Obviously, one 
should always try to take into account all basic performance criteria 
simultaneously. 

1 
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2. The detennination of the feasible solutions set is one of the fundamental 
issues of the analysis of engineering problems. The construction of this 
set is an important step in the fonnulation and solution of such problems. 

3. The problem fonnulation and solution make up a single process. Custom­
arily the designer first fonnulates a problem and then a computer is 
employed to solve it. However, in the case under consideration this 
approach is unsuitable because only in rare cases can one fonnulate a 
problem completely and correctly before its solution. The feasible solu­
tions set may be obtained only in the process of solution, therefore the 
problems should be fonnulated and solved in the interactive mode. 

4. As a rule, mathematical models are complicated systems of equations 
(including differential equations) that may be linear and nonlinear, deter­
ministic and stochastic, with distributed and lumped parameters. 

5. Usually the parameters of a model are continuous. The feasible solutions 
set can be multiply connected, and its volume may be several orders of 
magnitude smaller than that of the domain within which the optimal 
solution is sought. 

6. Both the feasible solutions and Pareto optimal sets are nonconvex. As 
a rule, the infonnation about smoothness of goal functions is absent. 
Usually these functions are nonlinear and continuous, however they may 
be nondifferentiable. Almost always, there are many various constraints, 
and the dimensionality of the design variables and criteria vectors reaches 
many dozens. 

7. Very often, designers encounter serious difficulties neither in analyzing 
the feasible solutions and Pareto optimal sets nor in choosing the most 
preferred solution. They have a sufficiently well-defined system of prefer­
ences. Besides, the aforementioned sets usually contain a small number 
of elements. 

As mentioned in the Introduction, to fonnulate and solve engineering optimiza­
tion problems, the method of parameter space investigation (PSI) has been devel­
oped. Statnikov (1978) and Artobolevskii et al. (1974) have been among the 
first to discuss the PSI method. A systematic and comprehensive description of 
the method can be found in Sobol! and Statnikov (1977,1981,1982) and Genkin 
and Statnikov (1987). In what follows, the material of these works is used to a 
considerable extent. 

Formulation of Multicriteria Optimization Problems 

We discuss here the fonnulation of the mathematical problem and methods of 
its solution that can be applied to the majority of engineering optimization 
problems. 
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Let us consider an object (mechanical, biological, social, etc.) whose operation 
is described by a system of equations (differential, algebraic, etc.) or whose 
performance criteria may be directly calculated. We assume that the system 
depends on r design variables a 10 .•• ,ar representing a point u = (a 10 ••• ,ar) of an 
r-dimensional space. Commonly, u appears in the aforementioned equations. In 
this book, when considering optimization problems, the design-variable vector 
(vector of design variables), u=(a1o' .. ar), is also referred to as solution or 
model, whereas the components of this vector are referred to as design variables 
or simply variables. 

In the general case, when designing a machine, one has to take into account 
design-variable, functional, and criteria constraints. 

Design-variable constraints (constraints on design variables) have the form 

(1-1) 

In the case of mechanical systems, aj represent the stiffness coefficients, moments 
of inertia, masses, damping factors, geometric dimensions, etc. 

Functional constraints may be written as follows 

q:::JL(u):5q*, l=l, ... ,t (1-2) 

where the functional dependenceS/AU) may be either functionals depending on 
the integral curves of the differential equations mentioned previously or explicit 
functions of u (not related to the equations); and CT and CT* are constraints 
such as the allowable stresses in structural elements, the track gauge, etc. 

Also, there exist particular performance criteria such as productivity, the 
material consumption, and efficiency. It is desired that, other things being equal, 
these criteria, denoted by <I>,,(u), v= 1, ... ,k, would have the extreme values. For 
simplicity we suppose that <I>,,(u) are to be minimized. 

Obviously, constraints (1-1) single out a parallelepiped 11 in the r-dimensional 
design-variable space (space of design variables). In tum, constraints (1-2) define 
a certain subset G in 11 whose volume may be assumed to be positive without 
loss of generality. 

In order to avoid situations in which the designer regards the values of some 
criteria as unacceptable, we introduce criteria constraints 

<I>,,(u):5<1>~*, v=I, ... ,k (1-3) 

where <I>~* is the worst value of criterion <I>,,(u) the designer may comply with. 
(The choice of <I>~* is discussed in Section 1-3.) 

Criteria constraints differ from functional ones in that the former are determined 
when solving a problem and, as a rule, are repeatedly revised. Hence, unlike 
CT and Cj*, reasonable values of <I>~* cannot be chosen before the problem 
solving. 
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Constraints (1-1)-(1-3) define the feasible solutions set D, i.e., the set of 
design solutions a i that satisfy the constraints, and hence, DCGCIT. 

If functions fl(a) and cflia) are continuous in IT then the sets G and D are 
closed. 

Let us fonnulate one of the basic problems of multicriteria optimization. It is 
necessary to find such a set PCD for which 

cfl(P) = min 4»(a) (1-4) 
«ED 

where 4»(a) = (cfl1(a), ... ,cflk(a)) is the criteria vector; and P is the Pareto optimal 
set. 

We mean that 4»(a)<4»(IJ) if for all v=l, ... ,k, cflia):5cflilJ) and at least 

for one voE{l , ... ,k}, cflvo(a)<cflvo(IJ). 

Upon solving the problem one has to detennine design-variable vector aOEP, 
which is the most preferred among the vectors belonging to set P. However, if 
not all perfonnance criteria can be fonnalized, then the optimal solution should 
be sought over the entire set D. 

Let us give an alternative definition of the Pareto optimal set. 

Definition. A point aOED, is called a Pareto optimal point, if there exists no 
point aED such that cflv(a):5cfliao) for all v= 1, ... ,k and cflvo(a)<cflvo(ao) for 

at least one voE{1, ... ,k}. A set PCD is called Pareto optimal if it consists of 
Pareto optimal points. 

The Pareto optimal set plays an important role in vector optimization problems, 
because (1) It can be analyzed easier than the feasible solutions set; and (2) the 
optimal vector always belongs to the Pareto optimal set, irrespective of the system 
of preferences used by the designer for comparing vectors belonging to the 
feasible solutions set. The importance of this set is detennined to a great extent 
by the well-known theorem fonnulated, for example, in Sobol' and Statnikov 
(1981). 

Theorem. If feasible solutions set D is closed, and criteria cflv(a) are continuous, 
then the Pareto optimal set is nonempty. 

Thus, when solving a multicriteria optimization problem, one always has to 
find the set of Pareto optimal solutions. 

Although these arguments in favor of the problem fonnulation are rather 
obvious, some alternative fonnulations are often used in practice. Next we 
analyze three such fonnulations and point out their drawbacks. 

A. Substitution of a multitude of criteria by a single one 

As a rule, this approach fails to provide acceptable results. For instance, 
sometimes it is wise to choose I3v2=O (usually, 131 + ... + I3k= 1) so that the function 
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integrates all requirements ofthe criteria <l>1, ... ,<I>b and to consider <I>(a) as the 
only performance criterion. The coefficient ~v reflects the relative "importance" 
of the criterion <l>v, v= 1, ... ,k. 

In practice, the "true" values of ~v are usually unknown beforehand, especially 
if these criteria are of different natures and reflect different aspects of the system 
behavior. Moreover, it is clear that in engineering problems, the "importance" 
of different criteria depends on their values, and it seems reasonable to choose 
different ~v for different parts of the set D. 

In practice, the designer usually starts with choosing some values of ~1'··· '~h 
and then finds the best point a' corresponding to the minimum value of <I>(a) 
for a ED. If some values of <I> v( a') prove to be unsatisfactory, then the designer 
chooses ~b ... '~h again. Clearly, such a procedure cannot be called optimization 
in the strict sense of the word; rather, this is a kind of exhaustive search whose 
completeness is not guaranteed. 

B. Optimization of the most important criterion 

In this case, the criterion considered by the designer to be the most important 
is retained, while all the others are replaced by constraints. 

Let <l>1(a) be the basic criterion. Then we have to choose constraints 
<I>~*, ... , <l>f* and consider the problem of finding the minimum 

<l>1(a~min 

under the following constraints: 

aj:5aj"';;;aj*, j=l, ... ,r, 
q:5h(a):5Q*, 1=1, ... ,t, 

<l>v(a):5<1>t*, v=2, ... ,k. 

It is clear that in this case we also face the problem of choosing criteria 
constraints <l>t* that cannot be reasonably solved without special calculations. 
If, however, there exists a reliable method for choosing <l>t*, v=2, ... ,k, then 
by using this method one can also select <1>1*, thus determining the set of feasible 
points D. In principle, it is possible to search for the best point in D taking into 
account only one criterion. However, as a rule, this way is not the most effective. 

Besides, the majority of engineering problems contain several meaningful 
criteria, some of them conflicting. This is a feature of design problems. 

C. Consecutive optimization of all criteria 

There are several algorithms allowing consecutive improvement of all criteria. 
Here we consider an approach that is often called the method of successive 
concessions. 
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At the first step, we detennine the minimum of <I> I ( «) for «ED. Let us denote 
this minimum by min <1>1. Then, a "concession" hI is chosen for the criterion 
<1>1 and the corresponding criterion constraint is specified: 

At the second step, the minimum value of <1>2(<<) is detennined for «ED, 
under the constraint <1>1(<<)::5<1>1'*. Upon calculating the minimum of <1>2 and 
choosing a "concession" h2 , we specify the second criterion constraint 

At the third step, the minimum value of <1>3(<<) is detennined for 
«ED, <1>1(<<)::5<1>1'* and <l>2(<<)::5<1>~*, and so on. 

Finally, the minimum value of <l>k(<<) is found for «ED, <1>1(<<)::5<1>1'*, ... , 
<l>k-I (<<)::5 <I> k! I. If min <l>k is attained at some point «' then this point is consid­
ered to be the best. 

It is clear that the point «' depends on both the order in which the criteria 
are enumerated, and on the choice of hj, ... ,hk- I . Besides, doubt always persists 
that by making a concession somewhat larger one could have improved the values 
of the rest of the criteria considerably. 

The Choice of a Single Criterion 

The issue of mathematical construction of a single (detennining) criterion <I> 
is dealt with by decision-making theory (Larichev 1987; Fishburn 1970; Keeney 
1972). In the general case, the problem is reduced to the induction of a partial 
order on the setD or to the construction of a value (utility) function U(<I>j, ... ,<I>k). 
This function must reflect the designer's system of preferences, i.e. 

U(<I>'{, ... ,<I>k»U(<I>;, ... , <1>.0. 

if and only if the designer considers the point «" corresponding to the values 
<l>v(a")=<1>~ as being preferred to the point «' that yields the values 
<l>v(<<')=<1>~ to the perfonnance criteria, v= 1, . .. ,k. If such a function U has been 
constructed (Matusov and Statnikov 1981), then the problem of choosing the 
best point reduces to minimizing the value function. 

However, even in those cases where the mathematical conditions of the exis­
tence of the function U(<I>j, ... ,<I>k) are satisfied, its construction is a very serious 
problem, since it requires much more infonnation than the designer usually 
possesses. However, in the problems of design, the best solutions can be found 
comparatively easily by searching over the set of Pareto optimal solutions. 
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1-2. Systematic Search in Multidimensional Domains by Using Uniformly 
Distributed Sequences 

The features of the problems under consideration make it necessary to represent 
vectors 0: by points of uniformly distributed sequences in the space of design 
variables (Sobol' and Statnikov 1981). In the following we consider this issue 
in brief. 

For many applied problems the following situation is typical. There exists a 
multidimensional domain in which a function (or a system of functions) is 
considered whose values may be calculated at certain points. Suppose we wish 
to get some information on the behavior of the function in the entire domain or 
in any subdomain. Then, in the absence of any additional information about the 
function, it is natural to wish that the points at which the function is calculated 
would be uniformly distributed within the domain. However, the question arises: 
What meaning should be assigned to the notion of a uniform distribution? This 
concept is quite evident only in the case of a single variable. By dividing the 
range of the variable into N equal parts and locating a point within each of the 
parts, we arrive at a sequence of N points (a net) uniformly distributed over the 
domain under consideration. Unfortunately, in the case of several variables the 
concept of uniformity is not so evident. If for each of the variables we make a 
partition similar to that done in the case of a single variable, then for n variables 
we get Nn points (a cubic net). However, the concept of uniformity should be 
independent of the number of points, and, besides, the use of nets containing 
so many points seriously complicates the solution of practical problems. 

Weyl was the first to give the definition of the uniformity. 
Let us consider a sequence of points PI, P2, •.. ,Pi , ... belonging to a unit r­

dimensional cube Kr. By G we denote an arbitrary domain in Kr, and by Stv<G) 
the number of points Pi belonging to G (l::::;j::::;N). A sequence Pi is called 
uniformly distributed in Kr, if 

(1-5) 

where V(G) is the volume of the r-dimensional domain G. (If, instead of the 
unit cube, a parallelepiped II is considered, then the right-hand side of (1-5) 
transforms into V(G)IV(II).) 

The meaning of the definition is quite clear: For large values of N, the number 
of points of a given sequence belonging to an arbitrary domain G is proportional 
to volume V(G): 

Figures 1-1 and 1-2 demonstrate different uniformly distributed sequences in the 
cubic net and the Po-net discussed in the Addendum. 
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o 1 

Figure 1-1 Cubic net for n=2 (N= 16) . 

• • 
• • • • • 

• • • 
• • • .. 

o 
Figure 1-2 Improved net for n=2 (N=16). 

In solving engineering problems one must commonly deal not with Kr, but 
with a certain parallelepiped II, and, hence, transit from the coordinates of the 
points uniformly distributed in r to those in II. Let us formulate the following 
statements (Sobol' and Statnikov 1981). 

Lemma 1. If points Qi with Cartesian coordinates (qil, ... ,qir) form a uniformly 
distributed sequence in Kr, then points Cti with Cartesian coordinates 
(aL ... ,a~) where 
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a !=a*+q"(a**-a*) J'=12 r 1 J IJ J J ' , , ••• , , (1-6) 

form a uniformly distributed sequence in parallelepiped II consisting of points 
(ab ... ,ar ) whose coordinates satisfy the inequalities a1:5ap::;a1*. 

Proof. Let us choose an arbitrary parallelepiped lloCll specified by inequalities 
aj:5aj:5{ij. According to (1-6), there exists Ii one-to-one correspondence between 
the points ofllo and those of parallelepiped llCKr, which is specified by inequal­
ities 

a·-a* a.-a* 
1 J <a.< 1 J 

a1*-aj 1 aj*-aj" 

Hence, the number of points aiEllo, denoted by.sM:llo), is equal to the number 
of points QiEll. The latter is denoted by SM:llo). Since the volumes of the 
parallelepipeds are equal to 

r - r a·-a· V(llo) 
V(llo) = .ll (aj-Cij), V(ll)=.ll *;_ 1* V(ll) 

J=l J=l a J a J 

respectively, 

This completes the proof of the lemma. 
If among the points a I, ... ,ai ,. .. forming a uniformly distributed sequence in 

ll, we choose all the points belonging to a certain domain GCll we obtain a 
sequence of points uniformly distributed in G. Let us prove this formulation. 

Lemma 2. Let a l , ... ,ai , ... be a sequence of points uniformly distributed in ll, 
and GCll be an arbitrary domain whose volume is V(G»O. If among the points 
ai, one chooses all the points belonging to G, then he arrives at the sequence 
of points uniformly distributed in G. 

Proof. Let ail, ... ,aiN be the first N selected points. If the number of the last 

point is N' (i.e., aiN==cI") then SN'(G)=N. 

Let us choose an arbitrary parallelepiped OoCG and denote by SM:llo) the 
number of the points from ail, ... ,aiN belonging to 00. Then SM:llO)=SN,(llo), 

since those of the points a I, .. . ,cI' that do not belong to G, cannot belong to 
llo. Hence, as N, and hence, N', tends to infinity, we have 

SM:llo) SN,(llo). N' SN'(Oo). ~_ V(llo) 
N N' N N' SN,(G) V(G) . 
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This completes the proof of the lemma. 
The extent of uniformity of a sequence may be estimated using the known 

characteristics presented in the Addendum, which also cites some additional 
requirements to the uniformity of the distribution of the first N points of a 
sequence. The requirements are of considerable importance, since these N points 
are used in practice. It is desirable that N not be too large, since otherwise too 
much computer time is needed. 

The practical advantages of using more uniform sequences/nets are as follows. 
If we wish to solve a problem (for instance, to obtain the Pareto optimal and 
feasible solutions sets) with a prescribed accuracy, then the use of a more uniform 
sequence assures a higher convergence rate. However, if the time allowed for 
solving the problem is very short, and hence, N is small, then the problem cannot 
be solved in this way. Nevertheless, using more uniform sequences one may 
distribute the points in such a way that they would represent the whole domain 
G satisfactorily. As a result, the designer would have sufficiently reliable informa­
tion about the problem under consideration. 

In the following discussion, we consider two different classes of uniform 
sequences whose uniformity characteristics are among the best presently known. 
These are the so-called LPT-sequences and the novel PT-nets. The necessary 
definitions, descriptions of properties, and the methods for calculating the coordi­
nates of the points of LPT-sequences, are presented in the Addendum. 

1-3. Parameter Space Investigation (PSI) Method 

In Section 1-1 we formulated the problem of multicriteria optimization and 
defined the feasible solutions set D, which is constructed using the values of 
<l>t*, v= 1, ... ,k, and some other constraints. Now we proceed by describing the 
parameter space investigation method allowing correct determination of <l>t* 
and, hence, of the feasible solutions too. 

The parameter (design-variable) space investigation method involves the fol­
lowing three stages, see Fig. 1-3. 

Stage 1. Compilation of the test tables with the help of a computer. 
First, one chooses N trial points a l , ... ,aN from G, see Section 1-2. Then, 

all the particular criteria <l>V<ai ) are calculated at each of the points ai, and 
for each of the criteria a test table2 is compiled so that the values of 
<l>v(a1), ... ,<I>v(aN) are arranged in the increasing order, i.e. 

(1-7) 

2Sometimes it is called an ordered test table. In an unordered table the columns are formed of 
the values of «I>v(Cli), j= 1, ... ,N. v= l ..... k. For example, see Table 2-1. 
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where it. i2, •.• ,iN are the numbers of trials (a separate set for each v). Taken 
together, the k tables form a complete test table. In the following discussion, 
the latter is called the test table3. 

Stage 2. Preliminary selection of criteria constraints. 
This stage envisages the interference of the designer. By analyzing tables 

in Equation (1-7) in turn, the designer specifies criteria constraints <I>~*. (It 
should be noted that the described method is convenient for a designer in 
practice. Actually, the designer has to consider one criterion at a time and 
specify the respective constraints.) 

All <I>~* are the maximum values of criteria <l>ia), which guarantee an 
acceptable level of the object's operation. If the selected values of <I>~* are 
not maximum, then many interesting solutions may be lost, since some of the 
criteria are contradictory. As a rule, the designer may put <I>~* equal to a 
criterion value <I>,,((i) whose feasibility is beyond doubt. However, if he starts 
by determining the maximum possible value of <I>~* then he has to pass to 
Stage 3. 

Stage 3. Verification of solvability of problem (1-4) with the help of a com­
puter. 

Let us fix a criterion, say <I>"I(a), and consider the corresponding table (Eq. 

1-7), and let S 1 be the number of the values in the table satisfying the selected 
criteria constraint: 

(1-8) 

One should choose the criterion <1>"1 for which Sl is minimum among the 

analogous numbers calculated for each of criteria <1>". 
Then criterion <1>"2 is selected in analogy to <1>"1 and the values of 

<I>"iail), ... ,<I>"iais,) of <1>"2 in the test table are considered. Let the table 

contain S2::5,s1 values such that <I>"2(aij):5<1>~~, l:5j:5S2• Similar procedures 
are carried out for each of the criteria. Then, if at least one point can be found 
for which all inequalities (1-3) are valid simultaneously, then the set D defined 
by inequalities (1-1)-(1-3), is nonempty, and problem (1-4) is solvable. Other­
wise, one should return to Stage 2 and ask the designer to make certain 
concessions in the specification of <I>~ *. However, if the concessions are highly 
undesirable then one may return to Stage 1 and increase the number of points 
in order to repeat Stage 2 using extended test tables. 

The procedure is to be continued until D proves to be nonempty. Then, the 
Pareto optimal set is constructed in accordance with the definition presented in 

3Fragments of the test tables are presented in Sections 1-4 and 6-1. 
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criteria constraints) 
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Determination of the Designers' 

most preferable advice 
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Figure 1-3 Flowchart of the algorithm. 

Section 1-1. This is done by removing those feasible points that can be improved 
with respect to all the criteria simultaneously. 

Let us consider the case where it is difficult to decide whether the value of a 
cP~* is maximum. Commonly, one is not sure whether the values ofCPv(a) from 

the interval CPia)::::;CPia)::::;<i>~* are feasible. (Here <i>~* is the value of the vth 

criterion for which the values CPv(a»<i>~* are known to be unacceptable.) In 
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such a case one has to go to Stage 3 and construct the feasible solutions set D, 
under the constraints <l>t*=<I>V<(i), and the corresponding Pareto optimal set P. 

Further, the set b is constructed under the constraints <I>;l',* v = 1 , ... ,k, as well 
as the corresponding Pareto optimal set P. Let us compare <I>(P) and <1>(1'). 

If the vectors belonging to <1>(1') do not improve the value of the vectors from 
<I>(P) substantially, then one may put <l>t* = <l>v(a). Otherwise, ifthe improvement 
is significant then the values of the criteria constraints may be set equal to 

<l>t*. In this case, one has to make sure that the optimal solution thus obtained 
is feasible4 . If the designer is unable to do this, then the criteria constraints are 
put equal to their previous values, <l>t*=<I>v(a). This scheme can be used for 
all possible values of <l>v«i) and <l>t*. 

The Selection of Trial Points 

In all the examples presented in this book, as well as in solving other problems, 
points Ql, Q2, ... ,Qi, ... of the LPT-sequence were used. 

According to Lemma 1 from Section 1-2, the Cartesian coordinates of a point 
Qi=(qil> Qi2, ... ,qir) are used to calculate from Equation (1-6) the coordinates of 
a point ai=(aL ... ,a~) belonging to parallelepiped ll: 

~!=~*+Q..l~**-~*) J·=1 r 1·=1 ,N u., u., lj\ u. , u." , ... , , ,. .. . 
When using the points of the LPT-sequence, one should refer to Table A-I 

presented in the Addendum. The table allows for solving problems with the 
number of design variables r:520 and the number of trials N:5216. Sobol' and 
Statnikov (1981) contains a table where r:551 andN:522o. Table A-6 corresponds 
to the novel PT-net where r::s20 and N::S212. 

According to Lemma 2 from Section 1-2, these trial points form a sequence 
uniformly distributed in G, as N~oo. 

At Stage 3 we find Q points belonging to D where Q:5N. The method for 
constructing and selecting these points (see Lemma 2, Section 1-2) guarantees 
that Q tends to infinity as N tends to infinity, and the sequence of the points is 
uniformly distributed within D. 

Remark. Besides the LP T-sequence and the P T-nets, there exist some other useful 
sequences and nets, several of which are discussed in the Addendum. Prior to 
solving a concrete problem one cannot say with certainty which of them is most 
suitable. Much depends on the behavior of criteria, the form of functional and 
design-variable constraints, and the feasible solutions set geometry. Hence, for 
the scheme presented in Figure 1-3, other sequences (nets) can be successfully 
used too. 

"To do this the designer will possibly have to analyze the mathematical model anew or, if 
necessary, conduct additional experimental studies. 
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Examples of the Feasible Solutions Set Construction 

Suppose two design variables, (Xl and (X2, may be varied and the quality of an 
object is evaluated by criteria cf>l and cf>2 depending on the design variables (see 
Fig. 1-4). It is required to minimize the criteria. We also suppose that a sufficiently 
large number of design solutions c/ and «1»( a i), i = 1, ... , N, represented in Figure 
1-4a and b by dots may be generated by computer (cf>(P) in Figure 1-4b is the 
set of Pareto optimal solutions in the criteria space). Owing to the presence of 
the three functional constraints Ct;a' Cr,'a, and Cra (Fig. 1-4c) the initial set 
of solutions reduces. The figure shows domain GCII satisfying the functional 
constraints. Within the criteria space shown in Figure 1-4d, cf>(G) is an image 
of G, so that C'F,<I>=cf>(C'F,a), i=l, 2, 3. Having determined G, the designer 
seeks the set of feasible solutions D. Figure 1-4f illustrates three dialogues. The 
first one is represented by cf>t;l and cf>r,'l where the second subscript indicates 
the number of the dialogue, and DI =0. At this stage the designer makes a 
concession. The second dialogue is represented by cf>t;2 and cf>r,'2, and D2=0 
again. The thi~d dialogl!e is represented by cf>t;3 and cf>r,'3; here D 3¥-0, D3CG. 
In Fig. 1-4e cf>j*and cf>~*are inverse images of cf>j* and cf>~* in the design­
variable space. 

Figure 1-5 shows schematically three dialogues for another problem. The first 
one is represented by criteria constraints cf>t;l and cf>r,'l, which form the set 
cf>(D I ), whose inverse image in the design-variable space is D I . The second and 
third dialogues are represented by criteria constraints cf>t;2 and cf>r,'2 and cf>r,'3 
and cf>r,'3 forming the sets cf>(D2) and cf>(D3), respectively: D2 and D3 are the 
inverse images of these sets. Upon analyzing D3 the designer has decided that 
it may serve as a feasible solutions set, that is, D3=D. Figure 1-5 shows the set 
of Pareto optimal solutions cf>(P) in the criteria space together with its inverse 
image P in the design-variable space. 

In Sections 6-1 and 6-2, we present various dialogues together with the corres­
ponding sets of feasible solutions. 

Figure 1-6 shows a disconnected and nonconvex feasible solutions set often 
encountered in solving engineering problems. 

The Complexity of Search 

For sufficiently large values of N the property of uniform distribution of points 
implies that -y= V(D)IV(ll)=N' IN where N is the number of points aiEII, and 
N' is the number of points that have entered D. For many engineering problems 
-y<{O.Ol, and the search for the solution is like seeking a needle in a haystack. 
(In effect, -y characterizes the complexity of solution of the problems belonging 
to the class under consideration.) 

"Soft" Functional Constraints and Pseudocriteria 

For many practical problems, there can be found "good" solutions that lie slightly 
beyond the limits imposed by the constraints. If a designer is informed about 
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Figure 1-4 Procedure for detennination of a feasible solutions set. 

this, in some cases he will be ready to modify the constraints so that the "good" 
solutions would be found inside the feasible solutions set. The question is how 
to obtain such information. 

Instead of the functionft(a), whose constraints are not rigid (soft), we introduce 
an additional criterion <l>k+r<a)=.fi (a), which we will call a pseudocriterion. 
However, to find the value of <l>ttl one has to compile a test table containing 
<l>k+l (a). By using the aforementioned algorithm together with the new test 
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Figure 1-6 Disconnected feasible solutions set <I> (D). 
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table one can define <l>n[ in a way preventing from the loss of interesting 
solutions. 

Strange as it may seem, in solving engineering single-criterion problems involv­
ing soft functional constraints, one has to pass to multicriteria problems in order 
to find the feasible solutions set. This is due to the fact that <l>t* may be 
determined correctly only upon analyzing the test table. 

In the general case, in solving a problem with soft functional constraints, one 
has to find the set D taking all performance criteria into account, the functions 
fl(ct) being considered as pseudocriteria. In other words, one has to solve the 
problem with the constraints 

<l>v(ct)$<I>t*, v=l, ... ,k,k+l, ... ,n. 

It was already mentioned that in order to "avoid multicriteriality," attempts 
were made to transform all criteria except one into functional relationships with 
constraints of the form (1-2). It is clear that one cannot act in such a way because 
it can lead to a considerable reduction of the feasible solutions set. Whenever 
possible, the designer has to do just the opposite, viz, to transform the functional 
relationships into pseudocriteria and then reduce the problem solution to the 
analysis of the test table. 

Investigation of Relations Between Criteria (Sobol' and Statnikov 1981) 

The results of the parameter space investigation method may be used for con­
structing the correlation matrix II r fJ.V II where r fJ.V is the cross-correlation coeffi­
cient for criteria <l>v(ct) and <l>fJ.(ct). The matrix allows estimating the extent of 
linear dependence between two criteria. For instance, if an element of the matrix 
r fJ.v= 1, f.L#V, then the criteria <l>v and <l>fJ. are linearly related. Investigation of 
the matrix may be helpful for analyzing the feasible solutions set. 

The Variations of the Design-Variable Constraints 

In solving optimization problems one has to specify design-variable constraints 
«j(*) correctly. However, this is not a simple matter as long as multivariable 
and multicriteria engineering problems of high dimensionality are considered. 
In Sections 1-4 and 1-6, we will show how this may be done. 

Visualization of the Process of the Criteria and Design-Variable 
Spaces Investigation 

This is an important process allowing the designer to grasp the very physical 
essence of a problem as well as to correct the mathematical model, the constraints, 
etc. In specifying boundaries «j<*) it is useful to analyze the functions <l>v(ct), 
since this allows us to decide whether the boundaries should be actually modified. 
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Let us consider the problem of optimal design of a four-cylinder automobile 
engine whose displacement volume is 1.6 1. Subjected to optimization were 18 
criteria; 24 design variables were varied. Figures 1-7a-c show the values of 
criteria <1>5, <1>14, and <1>17 depending on U3. Here U3 is the pressure (in Kgf/cm2) 

of the third piston ring on the cylinder wall; <1>5 is the mean oil film thickness 
(in IJ.m) under the third ring; <1>14 is mean heat conductivity (in W/m2·deg) of 
the third ring; and <1>17 is the minimal oil film thickness (in IJ.m) under the third 
ring. Criterion <1>5 is to be minimized, while criteria <1>14 and <1>17 are to be 
maximized. 

N= 1024 trials were conducted, and 585 vectors were plotted satisfying the 
functional constraints. By analyzing the plots the following conclusions were 
drawn: 

1. The system loses stability at u3=4.40. Therefore, in the subsequent 
analysis u~ was set equal to 5.0 (see Figs. 1-7a and c). 

2. By analyzing the dependences shown in Figures 1-7b and c the designer 
was able to determine the value of u~*. 

In more detail the correction of design-variable constraints is discussed in 
Sections 1-4, 1-6, etc. 

The Required Number of Trials 

As noted previously, unlike other optimization methods, the PSI method was 
devised not only to solve a problem, but also to help formulate it. Therefore, 
the number of trials N needed for constructing the feasible solutions and Pareto 
optimal sets depends to a great extent on how the problem is formulated. 

Also, it should be noted that N depends on the class of functions subjected 
to optimization, the number of design variables being varied, the volume of the 
parallelepiped under investigation, and the functional and criteria constraints. In 
turn, the number of the functions may reach many dozens, and they may be 
differentiable, nondifferentiable, nonconvex, discrete, etc. 

As a rule, the number of trials was determined on the basis of a nonformal 
analysis of the calculation results. Taken into account were the significance of 
the problem under consideration, the time available for obtaining the optimal 
solution, the quality of the mathematical model, the accuracy with which the 
criteria had to be calculated, etc. 

The need for a large number of trials is predetermined by the following 
considerations. Since engineering problems are, as a rule, ill-posed, one has to 
correct the mathematical model, the initial boundaries of the design variables 
and the values of both functional and criteria constraints. Usually, 70-85% of 
the total number of trials are "spent" to formulate an optimization problem. After 
all the constraints have been determined, the optimal solution may be obtained 
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by running a comparatively small number of trials. Taking into account the 
importance of the problems to be solved and the expected effect of optimization, 
in the majority of cases the designer has to agree to a comparatively large number 
of trials, which sometimes may achieve several thousands. 

This is the case primarily for batch and mass production of automobiles, 
machine tools, speed reducers, etc., which are manufactured in large quantities 
and for which the economy of metal and fuel as well as cost reduction are of 
paramount significance. In all these cases the efficiency of multicriteria optimiza­
tion may be quite high, and it should be implemented with utmost care. 

The experience accumulated in solving engineering problems shows that the 
time spent in formulating and solving an optimization problem is fully compen­
sated by the results. 

1-4. Example 1: The Choice of the Optimal Design Variables 
of an OsciUator 

Let us consider a two-mass dynamic model (Statnikov and Uzvolok 1990) shown 
in Figure 1-8 where M1 and M2 are masses, K1 and K2 are stiffness coefficients, 
and C is a damping factor. Mass M1 is acted upon by harmonic force Pcos(oo t) 
where P=2,OOO N and 00=30 S-1. 

The equations of motion are given by 

M 1X'{+C(Xj -Xi)+K1X 1 +K2(X1-X2)=PCOS(oo t), 
M2X'i + C(Xi-Xj)+ K2(X2- X 1)=0. 

The system contains five design variables, a1=K1, a2=K2, a3=M1, a4=M2, 
and 0.5 = C. We specify upper and lower bounds for each of the design variables 
thus determining the parallelepiped n 1 : 

1.1·106N/m$a1 $2.0·106N/m, 
4.0·104N/m$a2$5.0·104N/m, 

950 kg$a3$ 1 ,050 kg, 
30 kg $a4$70 kg, 

80 N·s/m$a5$ 120 N·s/m, 

c 
p·COS(wt) 

Figure 1--8 Two-mass dynamic model. 
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and three functional constraints (imposed on the total mass and partial fre­
quencies): 

The following four performance criteria were optimized: the first mass oscilla­
tion amplitude Xld, the total mass of the system MI +M2, and the dimensionless 
criteria X IiX 1st, and W/PI characterizing certain dynamic properties of the system, 
where X 1st is the static deflection of mass M 1 caused by force P. 

Both the constraints imposed on!I(a) and the lower constraints on!z(a) and 
h(a) are rigid. Conversely, the upper constraints on !z(a) and h(a) may be 
slightly varied by the designer. Accordingly, functional dependences!z( a) and 
h(a) should be transformed into pseudocriteria. They were denoted by <1>1 and 
<1>2, and the above performance criteria by <1>3-<1>6. 

Analysis in TIl 

On the basis of the PSI method, 4,096 trials (N=4,096) were carried out in 
TIl (see Table 1-1 for a presentation of a fragment of the test table). The first 
portion embraces the 10 best models obtained for each of the six criteria, and 
the other portion corresponding to the end of the test table presents the three 
worst solutions for each of the criteria. For example, the 10 best solutions 
(models) in the first5 criterion are presented in order of decreasing quality: 2,912; 
3,072; 480; 1,216; ... ; 2,768; 1,280; the three worst ones being 1,791; 2,751; 
and 1,407. The best solution in the second criterion is 901. It is followed by 
2,449; 2,402; 222; ... ; 3,555; the worst ones being 2,562; 3,007; 552; etc. 

Dialogue 1: The following criteria constraints have been formulated: 
<l>j*=40; <I>~*=32; <I>~*= 1.5; <I>~*= 1 ,030; <I>~*= 1.3; <I>~*=O. 75. 

Since no model has found itself in the feasible solutions set, three more 
dialogues were conducted. 

Dialogue 2: <l>j*=41; <I>~*=32; <I>~*=2.0; <I>~*=I,040; <I>~*=1.5; 

<I>~*=0.80. 
Thirty-five models have found themselves in the feasible solutions set. 

Dialogue 3: <l>j*=42; <I>~*=31; <I>~*=1.9; <I>~*=1,030; <I>~*=1.45; 

<I>~*=0.85. 

5Here representations «2.912; «3.072; «480; «1.216; ... ; «2.768; «1.280; and 2,912; 3,072; 480; 

1,216; ... ; 2,768; 1,280 are equivalent. 
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Table 1-2 

vi <l>1(<<i) <l>2(<<i) <l>3(<<i) <l>i«i) <l>5(<<i) <l>6(<<i) 

569 41.461 28.996 1.6263 1,018.4 1.3412 0.72358 
1,425 40.488 29.238 1.5451 1,022.8 1.2236 0.74095 
1,882 38.371 29.096 1.8115 1,022.6 1.2857 0.78184 
2,325 41.942 28.485 1.6493 1,021.9 1.3958 0.71527 
2,374 38.632 29.148 1.8256 1,024.9 1.3204 0.77655 
2,753 40.520 29.101 1.6179 1,009.0 1.2633 0.74038 
3,109 41.903 28.883 1.6530 1,012.0 1.3862 0.71593 
3,361 40.559 29.605 1.6867 1,004.9 1.3211 0.73967 

Twenty models have found themselves in the feasible solutions set. 

Dialogue 4: <l>i*=42; <I>~*=31; <I>~*=1.85; <I>~*=I,025; <I>~*=1.4; 

<I>~*=O.85. 

The feasible solutions set constructed using the PSI method contains eight 
models. Table 1-2 presents the values of the criteria for all eight feasible models, 
six of which are Pareto optimal. Models 1,425 and 3,361 were identified as the 
best ones (see Tables 1-3 and 1-4). Having analyzed the results the designer 
agreed to consider them as the final solution for the aforementioned parallelepiped 
II,. 

One of the ways of correcting design-variable constraints requires the construc­
tion and analysis of histograms of the design-variables distribution over the 

Table 1-3 

Results of investigations in II 1 Results of investigations in Il2 

<1>. «1»(<<1,425) «1»(<<3,361) «1»(<<2,753) «1»(<<6,569) 

<1>1 40.488 40.559 40.948 41.512 
<1>2 29.238 29.605 29.899 29.306 
<1>3 1.5451 1.6867 1.4539 1.3622 
<1>4 1,022.8 1,004.9 989.18 1,001.2 
<1>5 1.2236 1.3211 1.1352 1.l074 
<1>6 0.7410 0.7397 0.7326 0.7227 

Table 1-4 

Results of investigations in II 1 Results of investigations in Il2 

o.j 
«1,425 «3,361 «2,753 «6,569 

0.1 1.584'106 1.567'106 1.562'106 1.626'106 

0.2 4.840,104 4.613.104 5.164'104 4.955,104 

0.3 966.16 952.27 931.38 943.52 
0.4 56.621 52.627 57.803 57.690 
0.5 82.012 91.104 80.974 70.775 



www.manaraa.com

24 I Multicriteria Optimization and Engineering 

ranges of their variation. For vectors of the feasible solutions setD, the histograms 
of distribution of their coordinates over the variation ranges of respective design 
variables are constructed. For each design variable, the range of its variation is 
divided into n equal parts (segments). If any of these segments contains at least 
one trial from the feasible solutions set, these segments are marked by a black 
rectangle. The domain of feasible values of the design variable o.j is denoted by 
[o.1'L 0.1)*] (see Fig. 1-9). 

] ] 

Figure 1-9 demonstrates histograms for the distribution of the eight feasible 
models over the ranges of the design variables. The interval of variation of each 
design variable was divided into 10 equal segments. Those segments containing 
the feasible solutions [0.1); 0.1)*] are marked with black rectangles. 

] ] 

Figure 1-9 shows that the fourth, sixth, and seventh segments in [o.j ,o.j*] 
incorporate models 1,882 and 2,374; 1,425,2,753, and 3,361; and 569,2,325, 
and 3,109, respectively. The remaining segments contain no solutions. Figure 
1-9 presents the feasible models distribution in III for the remaining four design 
variables. 

From Figure 1-9 it follows that the feasible models for the second, third, and 
fifth design variables lie near the boundaries of variation of o.~*, o.~, and o.~, 
respectively. Intervals [o.~, 0.1)), (o.1)j, o.~*] are "holes" caused by functional 

and criteria constraints. As to the aforementioned design variables, the designer 
may agree to revise the original constraints 0. ~ *, 0. ~, and 0. ~ if the concessions 
would result in improving the values of the criteria. 

For example, it is important to know how much the feasible and Pareto optimal 
solutions would be improved in the basic particular performance criteria if the 
initial constraints [0. j, 0. j *] are replaced by new ones [& j, & j*]. 

In the general case, substitution of II I by new parallelepipeds may result in 
the disappearance or shift of the "holes" owing to the formation of new combina­
tions of the design variables. 

Let us consider the construction of a new parallelepiped II2 for which 
&j=o.j-8j and &j*=o.j*+8j*. Here 8j and 8j* are the concessions the de­
signer has made with respect to the jth design variable (the jth coordinate). As 
noted above, the final approval depends on the values of the performance criteria 
attained within the new parallelepiped as compared with the original one. The 
boundaries of the remaining design variables &j<*) stay the same as in III. 

For the parallelepiped II2, III~II2' we have: 

&j=o.j, 
&~=o.~, 

M=0.~-8~, 

&~=o.~, 

&~=0.~-8~, 

&j*=o.j*; 
M*=0.~*+8~*; 

&~*=o.~*; 

&~*=o.!*; 

&~*=o.~* . 

The boundaries of parallelepiped II2 were specified by the inequalities: 
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a* n1 

1.1·106N/m~O:I ~2.0·106N/m; 
4.0·104N/m~O:2~5.3·104N/m; 

930 kg~O:3~ 1 ,050 kg; 
30 kg~O:4~70 kg; 

70N·s/m~O:5~120N·s/m. 
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Figure 1-9 Histograms of the feasible solutions distribution. 
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Figure 1-9 shows the old, aj(*>, and the new aj(*>, design-variable boundaries 
fonning parallelepipeds TI. and TI2; also shown are the boundaries of the feasible 
solutions al/*> in TI2• For the previous functional and criteria constraints (see 
Dialogue 4),J the feasible solutions set contained 67 solutions, while TI. included 
only eight. In TI2, 8,192 trials were conducted; the best results are presented in 
Tables 1-3 and 1-4. 

The following conclusions may be made: 

1. The analysis of the feasible solutions in parallelepiped TI. (see Table 
1-2) has shown that for the initial functional constraints imposed on 

1.(0.)-13(0.), the feasible solutions set would contain only two vectors, 
1,882 and 2,374. The remaining six vectors have found themselves in 
the feasible solutions set owing to the transformation of the functional 
dependence h( a) into pseudocriterion <1> •• 

2. The analysis of Tables 1-3 and 1-4 has shown that the results of optimiza­
tion in TI. were improved by correcting the design-variable constraints 
for all four performance criteria <1>3, ••. ,<1>6. Thus, vectors 2,753 and 
6,569 from TI2 are undoubtedly better than solutions 1,425 and 3,361 
from TI •. 

The design variables of the most preferred Pareto optimal vectors in TI2 do 
not belong to TI •. 

The need for correcting both design-variable and functional constraints and 
for determining the criteria constraints in the interactive mode, is typical for the 
majority of applied optimization problems, especially those of optimum design. 
By using the PSI method one can readily solve the problems of finding the 
feasible solutions set. 

1-5. Example 2: Automotive Valve Gear Design 

The structural schematics of the valve gear used in the present-day automobile 
internal combustion engines with a camshaft in the cylinder block, are rather 
simple (see Fig. 1-10). Nevertheless, the choice of the mechanism's design 
variables is one of the most complicated problems one encounters in designing an 
automobile engine. Conventional design methods fail to satisfy all the conflicting 
requirements satisfactorily. As a result, the operational development of an engine 
takes more time and becomes more expensive. However, the problem may be 
solved efficiently using the PSI method (Genkin et al. 1983). 

The motion of the links of a dynamic model used for estimating and choosing 
the design variables of the valve gear of the majority of modem automobiles is 
described by the equation of longitudinal oscillation of the valve spring coils 
(Korchemnyi 1981) 
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Figure 1-10 Automotive valve gear. (1) Valve; (2) spring; (3) rocker; (4) push rod; 
(5) tappet; and (6) cam. 

subject to the following boundary conditions 

u(O,$)=O, u(1,$)=y($) 
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where u(~,<I» is the spring's displacement from the static-equilibrium state when 
the valve is shut; 11 is the damping factor (due to viscous drag) of the oscillations 
of the spring; F is the dry friction force between the spring coils and the damper; 
a is the speed with which disturbances travel along the spring (along the ~ 
coordinate); <I> is the rotation angle of the cam; w is its angular velocity; and Y 
is the valve displacement. 

The spring vibration damper is made of a steel ribbon whose width is band 
thickness is h and which is actually a spring mounted within the valve spring 
with interference 8. 

To determine y( <1» one has to use the equation of motion of the reduced mass 
of the valve, M: 

" b , C " Fo+Fr C dU(l,<I» 
Z +M- Z +--2 z=x +--2-+ 2 ::II: 

W Mw Mw Mw u<" 

where z=x-y is the valve drive elastic deformation; x(<I» is the tappet displace­
ment reduced to the valve; b is the valve gear conditional total viscous drag 
coefficient; F 0 is the valve spring preload; F r is the force due to the cylinder gas 
pressure exerted onto the valve head; c is the valve spring stiffness; and C is the 
stiffness coefficient of the valve drive. 

The valve is initially at rest: y(O)=y'(O)=O. The perfection of the valve gear 
design is estimated using the following performance criteria. 

Criterion <1>1 characterizes the maximum gas flow rate through the valve that 
is proportional to average lift Ym. The larger Ym, the higher the engine power 
and its economical operation. The maximum Ym is practically equivalent to the 
maximum tappet average lift, which may be found at the stage of the kinematic 
calculation of the mechanism. This quantity is used as the performance criterion 

<1>/ 

<!>I~X.~ ~<I>' f xd<l> 
<l>i 

where <l>i and <1>/ are the cam rotation angles corresponding to the beginning and 
termination of the theoretical valve lift (determined when ignoring the drive's 
elastic deformations). Note that the attempts to increase Xm may have an adverse 
effect on other criteria characterizing the possibilities of a practical realization 
of the mechanism and its operability. 

Criterion ~2 is numerically equal to the minimum radius of the flat tappet for 
which the contact line length (equal to the cam width l) does not decrease for 
any relative position of the cam and the tappet: 
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I 2 (I )2 (Xmax) + 2+ e . 

Here, e is the tappet axis displacement with respect to the cam center. 
Criterion <1>2 should be minimized, since this would allow decreasing the 

overall dimensions of the cam pair as well as its mass and inertia. 
Criteria <1>3 and <1>4 are the extreme values of the tappet acceleration analogue6: 

<l>3=X~, <1>4= 1 X~in I· Commonly, x'~in corresponds to the top of the cam. 
Since <1>3 is approximately proportional to the maximum force of inertia acting 
onto the cam, and <1>4 to the maximum force of inertia applied to the valve 
spring, both criteria should be minimized. 

Criterion <1>5 is equal to the maximum static contact stress at the cam top: 

<l>5=A 
(FO+cxmax)F 

l(xmax + x" min + '0) 

where A is a factor depending on the Young moduli of the cam and tappet 
materials; i is the valve rocker arm transmission ratio; and '0 is the radius of the 
initial circle of the equivalent cam. In designing valve gears, <1>5 is to be made 
as small as possible. For a plane flat tappet this quantity depends mainly on the 
cam profile. 

Criteria <1>6 and <1>7 allow preliminary estimation of the correct choice of the 
valve gear design variables. Criterion <l>6=my+mt+mr where my, mt, and mr are 
the masses of the valve, the tappet, and the push rod respectively. <1>6 should 
be made as small as possible. 

Besides decreasing the specific quantity of metal, this helps to decrease 
the valve's reduced mass, thus affecting the dynamic properties of the valve 
gear. The effect may be evaluated with the help of criterion 
<l>7=(21T)-1 --.j(CIM-(b2/4M2), which is the valve gear natural frequency and 
should be maximized. 

Criterion <1>8 characterizes the valve spring fatigue safety margin. The larger 
<1>8, the less the probability of the spring's failure. 

Criterion <1>9 represents the maximum elastic deformation of the valve drive 
Zmax, which is proportional to the maximum force applied to the mechanism. 
The latter operates the better the smaller <1>9. 

Criterion <1>10 is equal to the absolute value of an analogue of the valve velocity 

6Here, the acceleration analogue (velocity analogue) is the second (first) derivative of the tappet 
displacement with respect to angle of the cam rotation. 
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at the instant it hits the seat, Iylmi. It defines both the impact intensity and the 
maximum stresses in colliding parts. To a considerable extent, this criterion also 
characterizes the possibility of repeated opening of the valve due to its bouncing 
after the strike against the seat. This unfavorably affects the valve's longevity. 
Criterion <1>10 should be minimized. 

The longevity of a cam pair greatly depends on the lubrication condition, 
which is characterized by the derivative p' of the "lubricant number" p calculated 
at the cam rotation angle at which p changes sign. At this point, p' must satisfy 
the inequality p'~540I1T. Therefore, the following functional constraint was 
used: 

The functional constraint <l>12=Zmin~0 assures absence of breakings in the 
kinematic chain of the valve gear. 

Of greatest importance for the solution of optimization problems are the valve 
gear design variables defining the tappet's law of motion x( <1» (see Fig. 1-11). 
In constructing the law one should use piecewise-polynomial functions only, 
regarding as design variables the values of the corresponding function and its 
three derivatives at the points where either x(<I» or x' (<I» or x"(<I» attains extreme 
values. Curve x(<I» is composed of six arcs, three of which correspond to the 
valve lift and the remaining three to its downward travel. The aforementioned 
design variables specify the conditions for matching the arcs that form the x( <I> ) 

curve and assure that it is uniquely defined. If the curve is symmetric, then one 
has to specify 13 design variables (see Table 1-5). 

It was found that not all the combinations of the design variables assure the 
desired behavior of the curve x( <1» and its derivatives. Therefore, a functional 
constraint has been introduced that requires that the sign of x'" (<I» remain constant 
within each portion ofthex(<I» curve. Table 1-5 presents all the design variables 
chosen in formulating the optimization problem. 

The problem was solved in several stages. At the stage of preliminary calcula­
tion, the expediency of transforming functional constraints <1>11 and <1>12 into 
pseudocriteria was revealed, and the validity of the functional constraints imposed 
on x'i', i= 1, 2, 3 was checked. Of the total number of 2,048 models (points of 
design-variable space) 40 were included into the test table. Thus, the efficiency 
of the tappet's law of motion specified in the form of a piecewise-polynomial 
function was demonstrated. The laws of motion corresponding to the models 
presented in the test table are characterized by more favorable profiles of the 
tappet velocity and acceleration curves as compared with the initial model (the 
prototype) a 1• 

Optimization of the intake valve design variables was reduced to carrying out 
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Figure 1-11 Law of tappet motion. (1) Curve of the tappet lift; (2) curve of the tappet 
velocity analogue; and (3) curve of the tappet acceleration analogue. 

seven numerical experiments on a computer. These differed in the number of 
design variables being varied. In the first experiment a15, al7, alS, and aZ3 were 
varied. In the second experiment, the values of these design variables remained 
unchanged and equal to the values of the corresponding design variables in the 
initial model a l . In the seventh experiment al was also kept constant. 

For the design-variable values of the initial model, we took the design variables 
of the presently available intake valve drive of the valve gear of a V8, 180 hp 
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automobile diesel. It was necessary to construct the feasible solutions and Pareto 
optimal sets and find within the latter a model that would be better than the 
initial model «'. 

The first-experiment design-variable domain is presented in Table 1-5. A total 
of 2,048 trials were carried out. The performance criteria were calculated for 
the trials that were not discarded owing to the functional constraint in x!'. Of 
the 2,048 trials, 40 models have satisfied the constraint and were included into 
the test table (omitted here because of its large size). The criteria constraints 
were found using the PSI method. Those of the 40 models that satisfied the 
criteria constraints have formed the feasible solutions set D. There are six such 
models that belong to the Pareto optimal set. The fact that of the 2,048 trials 
only six appear in the feasible solutions set is explained by the rigid functional and 
criteria constraints, which, evidently, cut off comparatively small disconnected 
domains from the parallelepiped. Upon analyzing the Pareto optimal models 
table the designer could readily define the most preferred one. It proved to be 
model «224. Being insignificantly worse than model «' in criteria <1>, and <1>7, 

the model «224 exceeds «' in all other criteria. Thus, the fatigue safety margin 
increased by 14%, the contact stresses at the cam top decreased by 10%, and 
the impact velocity decreased by a factor of almost 2.2 to become less than the 
theoretical value defined by the cam profile. Besides, the maximum positive and 
negative accelerations have decreased by 9% and 4%, respectively. 

In the experts' opinion, model «224 is, on the whole, undoubtedly better than 
the initial «' model. This conclusion was confirmed by comparing the calculated 
kinematics and dynamics of the mechanisms corresponding to models «' and 
«224. The model «224 acceleration curve is much smoother than that of model 
«' (compare Figs. I-lIb and a), the smoothness affecting the mechanism's 
operability favorably. The maximum stresses in the model «224 valve spring are 
smaller by 20% than in the case of model «' (see Figs. 1-12b and a, respectively). 
The discontinuity of the kinematic chain due to negative tappet accelerations 
is practically absent, and the premature contact of the valve and the seat is 
eliminated. 

In the second experiment, 15 design variables were varied. Similarly to the 
first experiment, 40 models entered the test table, and the feasible solutions and 
Pareto optimal sets contain practically the same models as in the first experiment. 
The values of all criteria except <1>5 and <1>10 are almost equal for the first and 
second experiments. However, the values of criteria <1>5 and <1>10 obtained in the 
first experiment are somewhat better. 

By comparing the results of optimization in the two experiments we conclude 
that, if possible from the viewpoint of manufacture, the design of the push rod 
and the valve spring should be modified in accordance with model «224 obtained 
in the first experiment. However, it is worth mentioning that the design was 
mostly improved due to the modification of the tappet's law of motion, which 
for model «224 was the same in both experiments. Therefore, the use of model 
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T, Kg / M r.f; Z, 2 T ( 0,1 M M - 5 Kg- / M M 1 ) 
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Figure 1-12 Dynamics of a valve gear. (1) Corresponds to the stresses (7) in a moving 
coil; (2) corresponds to the stresses (7) in a stationary coil (3) static stress (7); (4) valve 
drive deformation (Z); and (5) conditional minimum allowable deformation of the valve 
drive (ZT). 

a 224 constructed in the course of the second experiment (in which the specific 
features of mass production were taken into account to a greater extent) gives 
practically the same results. 

The effect of the variation of design-variable constraints on the performance 
criteria was analyzed in the subsequent four experiments. 

Table 1-6 shows the results of the intake and exhaust valves optimization. 
Model a 224 surpasses model a l in all the criteria, except <l>J, which, however, 

is one of the most important performance criteria. Therefore, the seventh experi­
ment was conducted with the objective of improving <1» without a considerable 
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deterioration of the remaining criteria as compared with model a 224 . The analysis 
of the test table has shown that all the criteria cannot be improved simultaneously, 
since, for instance, <1>1 and <1>8, <1>9, <1>10 are conflicting criteria. However, the 
analysis of the Pareto optimal models has shown that the deterioration of <1>1 in 
model a 224 as compared with model a 1 is due to the value of design variable 
a 1 in a 224 being smaller than in model a'. It was decided to put a 1 = 7 . 3 as in 
model a 1• After that, 2,048 trials were conducted, which allowed us to find a 
model possessing the desired properties. This is model al,663 (see Table 1-6 and 
Fig. 1-12c). Actually, this model improves the initial model a' in all criteria. 
Unlike models a 1 and a 224 , its kinematic chain stays continuous. Besides, for 
model a 1,663 both the valve drive maximum deformation and the intensity of 
the valve spring coils vibration are smaller. 

Thus, despite the fact that the initial models a' for both the intake and the 
exhaust valves corresponded to sufficiently good designs, and the boundaries of 
the design variables, taking the mass production specific features into account, 
were rather narrow, the use of the method of multicriteria optimization has 
allowed a substantial improvement in the kinematic and dynamic characteristics of 
the mechanism. Models a 224 , a,,663, and a 701 notably surpass the corresponding 
models a'. 

1-6. Specific Features of the Optimization Problems Formulation Using 
Finite Element Models 

The finite element method (FEM) is widely used in numerous engineering prob­
lems of fluid mechanics, heat transfer, dynamics, strength, etc. However, the 
specific features of the problems make it necessary to modify the multicriteria 
formulation of optimization problems (see Section 1-1), since some basic criteria 
cannot be formalized. At the same time, without allowing for unformalizable 
criteria one cannot guarantee correct results. Usually, the criteria are related to 
optimal product manufacture technology, aesthetics, and similar aspects. As a 
rule, unformalizable criteria may be taken into account in analyzing the geometri­
cal shapes of parts, units, structures, etc. 

Problem Formulation and Its Specific Features (Statnikov et al. 1993) 

Let us consider a finite element model of an object to be designed and a system 
of design-variable, functional, and criteria constraints (1-1)-(1-3). We define 
D as a set of vectors a i satisfying the constraints. Note thatD is determined 
using formali~ble criteria <I>" ... ,<I>k and functional dependences. 

Let the set D contain p elements for each of which the geometrical shape of 
the object under consideration may be generated. In visualizing and analyzing 
the set, the designer takes the remaining (unformalizable) criteria <l>k+ 1, ... ,<I>k+m 
into account, that is by considering the geometry, he tries to find whether an 
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element belonging to D is actuallVeasible. This results in the construc!!..on of a 
new feasible solutions set D, DCD, which is often much smaller than D. 

Then the optimization problem reduces to finding the optimal vector ct° on 
the feasible solutions set D. As is ~e~known, the optimal solution is commonly 
sought on the Pareto optimal set PCD. 

In the problems under consideration the geometrical shape of an object is 
calculated using the design variables of each of the points cti , i = 1 , ... ,N. The 
finite element model must be modified accordingly. Since the number of trials 
is large, the model should be modified automatically. This may be done by using 
various methods for modifying the shapes of the curves and surfaces (Bezier 
1987) as well as by using automatic finite element mesh generators. 

An Example of Formulation and Solution of an Optimization Problem 

Figure 1-13 shows the structure subjected to optimization. This is a plate rigidly 
fixed along the contour 1-2 and freely supported along the contour 3-4. The 
loads are applied along the contour 5-6 and are represented in the form of 
distributed forces whose intensity qix), qy(x), qz(x) is specified in such a way 
that the resultant forces and moments are not affected by a variation in the 
contour length. 

The designers have defined the following performance criteria: 

<l»1(ct)=(1)1 - min, 
<l»2(ct)=(1)2- max, 

I ws+w61 
<l»3(ct) 2 - max, 

I ws-w61 
<l»4(ct) - min, Xs 

<l»s(ct)=m- min 

where (1)1 and (1)2 are the first and second natural vibration frequencies respectively; 
Ws and W6 are the displacements of points 5 and 6 in the direction of z-axis; X6 

is the coordinate of point 6; <1»3 and <1»4 characterize the average linear and angular 
displacements of the line 5-6 points; and m is the plate mass. The stress-strained 
state of the structure is defined by the Mises maximum equivalent stress 

where [<1] is the allowable stress. 
Since the functional constraint [<1] is not rigid (because the structure may be 

manufactured of different materials), Act) should be represented in the form of 
pseudocriterion <l»6(ct)=<1max. 

Thus, the criteria vector has the form 
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y 

Figure 1-13 The structure being optimized (a plate). 

Varied are 10 of the coordinates of points 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 
14 and also the plate thickness. Points 7-14 are used as reference points for 
obtaining curves 2-3, 4-5, 6-15, 1-15. The design-variable boundaries define the 
II, parallelepiped. 

Each point from the design-variable space corresponds to a separate finite 
element model. 

Platelike four-node plane elements possessing both bending and membrane 
stiffness are used. Calculation of each solution oi is accompanied by automatic 
generation of a new finite element mesh. 
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Stage 1: Investigation of parallelepiped "t. In I1t, 2,112 trials were carried 
out. The four dialogues implemented in investigating the design-variable space 
have provided the following criteria constraints <1»**=(11.2,60.0,0.03,0.05, 
l8.0, 250.0). These data were used for constructing the feasible solutions set 
D(II1) containing six design-variable vectors, all of which are Pareto optimal. 
Figure 1-14 shows (against a black background) three most interesting solutions 
of the plate (white color), the difference being in geometrical shapes of the 
plate. These feasible solutions correspond to vectors 1,238, 387, and 1,353. 
Figure 1-14 presents the corresponding values of the performance criteria and 
design variable a9 (the plate thickness). This design variable is rather important 
for anal"'yzing the results. The complexity of the problem of determination of 
the set D is demonstrated by the fact that the ratio of the number of feasible 
vectors to N is a small quantity of the order of 0.003. 

Optimal solution 1238 (II1 ) 

<1>1 10.91 Hz <P1 11.18 Hz 

4>2 51.55 Hz <F2 66.59 Hz 

<P3 0.138 M 4>3 0.120 M 

<P4 0.035 rad <F4 0.022 rad 

<Ps 10.52 Kg <1>5 9.194 Kg 

'fJ6 228.3 MPa <1>6 247.9 tAPa 

a,s 9.29 MM CifJ!1 12.98 MM 

4>1 11.18 Hz <1>1 10.35 Hz 

<1>2 66.33 Hz tf>z 65.39 Hz 
r-

<1>3 0.107 M T3 0.140 M 

<1>4 0.025 rad 4>4 0.028 rad 

1'5 10.72 kg tf>s 10.7 Kg 

4>6 165.7MPa tJ>6 202.BMPa 

Cig 10.45 MM (X,9 9.71 MM 

<1'1 10.49 Hz <1>1 10.64 Hz 

tf>2 51.81 Hz <P2 65.25 Hz 

'1>3 0.101 M 4>3 0.125 M 

T4 0.042 rad tf>4 0.017 ract 

TS 12.53 Kg- <1>5 10.4 Kg 

4>6 215,5MPa tJ>6 235.9 MPa 

(Xs 9.85 MM (X,s 11.34 MM 

Figure 1-14 A portion of the representations album. 
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Stage 2: Correction of design-variable constraints and construction of a 
new parallelepiped "2. Figure 1-15 shows the histograms for distribution of 
the six solutions in TIl over the ranges of the design variables alt a2, a3, as, 
and a 10. Having analyzed the histograms the designer was able to construct 
parallelepiped TI2, within which 2,378 trials were conducted subject to the 

~1*Il=: 1!!!!!!!!1I. &1* 

A *1'. !!!!!!!!!!!!!!!!==9'1 ~lfolfII cxzlj: i 2. 2 

-- . a;1I 1 1 1 1 I 1 1 1 I II a~* 

&j I:!!!!!!!!!J!!!!:===::I ~ t* 

• as II ·1 1 I I I 1 I I I II cxa* 

&;I~! !!!!!!!!!!!~u &8* 

"*11 ======:!!!~III ~1*O* cx10 11= \N 

Figure 1-15 Histograms of the feasible solutions distribution. 
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aforementioned criteria constraints. The effectiveness of the correction of 
des!gn-variable constraints is demonstrated by a substantial extension of the 
set D (Il2), which now contains 30 vectors (including 11 Pareto optimal ones). 
The geometrical shapes of the three structures corresponding to vectors 2,278, 
1,203, and 531 are shown in Figure 1-14. The histograms presented in Figure 
1-15 demonstrate the feasible solutions distribution in Il2. Note that for <1>5< 18 
kg, the mass of feasible structures has increased in parallelepipeds II, and Il2 
from 10.62 kg to 12.558 kg and from 9.19 kg to 17.24 kg, respectively. 
However, Il2 does contain three vectors, 531, 1,076, and 2,278, for which 
the structure's mass is less than 10.62 kg, viz. 10.4, 9.6, and 9.19 kg, 
respectively. 

Stage 3: Visualization and analysis of the d!!..tao_Thus, ~e investigations 
carried out in II, and Il2 have provided the setD=D(Il,)UD(Il2) containing 
36 solutions. With respect to basic formalizable criteria <1>" <1>2, and <1>5, the 
previous three solutions in Il2, 531, 1,076, and 2,278, were assumed to be 
the best ones. After the analy~s of the geometrical shapes of the structures 
corresponding to vectors from D (taking into account the technological features 
of their manufacture), the feasible solutions set D appeared to contain eight 
solutions. The designers have preferred solution 1,238 from II, (see Fig. 
1-14). In such an important criterion as mass, this structure is inferior to the 
aforementioned solutions fro~ Il2, since its mass is 10.62 kg. Also, vector 
1,238 is not Pareto optimal in D with respect to criteria <1>,-<1>5. This confirms 
the conclusi.Qn that t~ optimal solution must be sought not on the Pareto 
optimal set P but on D. Hence, the majority of multicriteria optimization 
methods (Molodtsov and Fedorov 1979) are inefficient for the class of pr~lems 
under consideration, since they do not allow construction of the setD, and 
hence construction of the feasible solutions set D. Thus, we see that the PSI 
method should be used. 

Conclusions 

The use of the PSI method for optimizing various objects with the help of finite 
element models allows correct construction of the structure shapes set. The resulting 
solutions constitute the so-called album of the object representations or the album 
of visualization of an object. Figure 1-14 demonstrates a fragment of the album. 
In analyzing it one can take unformalizable criteria into consideration. As a result, 
feasible solutions setD is determined. By analyzing multiple solutions of a structure 
one can readily choose the best product manufacture process, including the optimal 
processing technique, equipment, tools, and devices. 

The creation of the representations album should be considered one of the 
most important features of the class of problems under consideration. The album 
helps the designer to analyze formerly unknown geometrical shapes of the struc­
ture subjected to optimization and thus facilitates the search for innovative solu­
tions. 
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The efficiency of the PSI method for optimizing finite element models was 
demonstrated by choosing the optimal design variables of the truck frame (see 
Section 6-2). As a result, the frame mass was reduced by 28 kg and some other 
performance criteria were improved (Velikhov et al. 1986). 

Remark. In Statnikov and Matusov (1994), the search for optimal design vari­
ables of a platelike structure according to a multiple criterion is discussed. To 
solve the problem the programs implementing the finite element method and 
optimization techniques are used. The results of the comparison of the single­
criterion and multicriteria approaches are presented. 

In the first case, the well-known I-DEAS and ANSYS software packages with 
single-criterion optimization modules have been used. I-DEAS and ANSYS 
are general-purpose finite element analysis program packages that are used by 
engineers and designers around the world to analyze the stress, vibration, and 
heat transfer characteristics of structures and mechanical components. To this 
class of programs one should also relate such packages as MSCINASTRAN, 
COSMOS, NISA, and others. 

In the second case, the MOVI software package implementing the PSI method 
combined with the ANSYS finite element analysis program has been used. 

The advantage of the multicriteria approach delivering important information 
about all Pareto optimal solutions to engineers and designers is proved. 

Statnikov and Matusov (1994) conclude that to come to the best decision it 
is necessary to use multicriteria optimization in general-purpose finite element 
analysis programs. 

The PSI method allows: 

1. Determination of design-variable, functional, and criteria constraints 

2. Taking into account the design-variables effect on criteria 

3. Finding the criteria whose values remain practically constant and may 
thus be excluded from the further study 

4. Singling out interdependent and conflicting criteria, etc. 

The possibility of finding and evaluating the diversity of shapes of the object 
under consideration as well as its visualization and analysis allows the designer 
to take unformalizable criteria into account. 

However, the determination of the feasible solutions and Pareto optimal sets 
is of paramount importance. 
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Approximation of Feasible Solutions and 
Pareto Optimal Sets 

2-1. Approximation of a Feasible Solutions Set 

We have introduced the notion of a feasible solution in the multicriteria optimiza­
tion problem. The algorithm discussed in Section 1-3 allows simple and efficient 
identification and selection of feasible points from the design-variable space. 
However, the question arises: How can one use the algorithm for constructing 
a feasible solutions set D with a given accuracy? Since it is known that for the 
problems involving continuous design variables and criteria the set D is also 
continuous, the latter is constructed by singling out a subset of D that approaches 
any value of each criterion in region «I»(D) with a predetermined accuracy. 

The possibility of approximating a feasible solutions set is illustrated by the 
following example (Sobol' and Statnikov 1981). Within the square 

criteria «1»1 =<1?+4<1~ and «1»2=(<11 + 1)2+(<12-1)2 are specified, and are to be 
minimized taking the functional constraint 1<12-<11-0.3751;::::0.125 into account. 
In this case, the set D is the square 11 from which a strip has been cut out (see 
Fig. 2-1). The Pareto optimal set is composed of portions AA 1 and A 2 A 3 of 
hyperbola <12=-<11(3<11+4)-1, segmentA3A4 of boundary <11=-0.5, and seg­
ment A lAS of boundary <12-<11 =0.25. The method for obtaining the set has been 
discussed in Bartel and Marks (1974). Also, the figure shows region «I»(D) on 
the criterion plane. 

Points Bi on the criteria plane shown in Figure 2-1 are the images of points 
Ai. The exact trade-off curve (the Pareto optimal set) is shown in Figure 2-2, 
while Figure 2-3 presents the trial points in «I»(D). Judging by Figure 2-3a 
obtained for N=64, one cannot be sure that the set «I»(D) consists oftwo separate 

43 
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Figure 2-1 Feasible solutions sets in the design-variable space, D, and the criteria 
space, <I> (D). The set P consists of arcs AAIA5 and A2A3A4 , while <I> (P) consists of 
BBIB5 and B2B3B4. 
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Figure 2-2 Exact and approximate (dashed line) Pareto optimal sets of N=64. The 
crosses indicate approximate Pareto optimal points for N=512. 

parts; however, for N=256 this is quite clear (see Fig. 2-3b). We see that in the 
latter figure, and more so in Figure 2-3c plotted for N=S12, the feasible region 
cf>(D) is approximated quite well. 

Let Ev be an admissible (in the designer's opinion) error in criterion cf>v. By 

E we denote the errors set {Ev}, v=l, ... ,k. We will say that region cf>(D) is 

approximated by a finite set cf>(DE ) with the accuracy up to the set E, if for any 
vector CtED, there can be found a vector PEDE such that 1cf>V<Ct)-cf>V<P)I:5Ev , 

v=l, ... ,k. 
Hence, for not too large values of Ev, region cf>(D), or D, may be constructed 

only if the number of points belonging to D is sufficiently large. The latter 
circumstance leads to a considerable consumption of computer time. It is clear, 
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Figure 2-3 Trial points approximating the feasible solutions domain for N=64, 256, 
and 512. 

however, that incomplete construction of the feasible solutions set may lead to 
results that are far from best. 

We assume that the functions we shall be operating with are continuous and 
satisfy the Lipschitz condition (L) formulated as follows: For all vectors a and 
Il belonging to the domain of definition of the criterion <l>v, there exists a number 
Lv such that 
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l<I>v(a)-<I>v<p)I:5Lvm~lar~A 
J 

In other words, there exists L~ such that 

r 
1<I>v<a)-<I>v<p)I:5L~ L lar~J 

j=l 

This is one of the least limiting conditions one encounters in the theory of 
optimization. In practice, its violation means that one has to deal with a "patholog­
ical" function. Fortunately, in engineering optimization problems such functions 
are extremely rare. 

We will say that a function <l>V<a) satisfies the special Lipschitz condition (SL) 
if for all vectors a and p there exist numbers JJ" , j= 1, ... ,r such that 

r 

l<I>v(a)-<I>v(p)l:5 L JJ" lar~jl 
j=l 

where at least some of JJ" are different. 
The class of functions SL is of interest because: 

1. Class L incorporates all the functions belonging to class SL. (In the 
majority of practical cases these classes coincide since the functions one 
encounters in solving engineering problems have different sensitivities 
with respect to design variables, and hence the constants JJ" are different 
too.) 

2. For class SL, the convergence rate of the approximation process is greater 
than for the class with the Lipschitz condition (see Theorem 1 as follows). 

3. The PT-nets (see Addendum) used for calculating criteria are optimal for 
the class SL of functions (Sobol' 1987). 

Let us estimate the number of points of an r-dimensional P T-net, which is 
sufficient for approximating <I>(D) with a given accuracy for criteria <l>v<a)eL or 
<l>v(a)eSL. 

Theorem 1. If criteria <l>v<a) are continuous and satisfy either the Lipschitz 
condition or the special Lipschitz condition, then to approximate <I>(D) to an 
accuracy of E it is sufficient to have 

([ r OJ) r L llv 
2T([Lv]) 2T j=l max -[ j or max -[ -]-

v Ev v Ev 
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points of the PT-net (Statnikov and Matusov 1985). 

r 
Proof. Let [Lv] (or 2: Vv) be a dyadic rational number7 exceeding Lv (or 

j=l 
r 

2: Vv) and sufficiently close to the latter, and let [Ev] be the maximum dyadic 
j=l 
rational number that is less than or equal to Ev and whose numerator is the same 

r 

as that of [Lv] (or [2: VvD. For any a = (a 1, ... ,ar) we consider an r-dimensional 
j=l 

cube :£~ with the edge length [Ev]J[Lv], aE:£~. The volume of the cube is given 
by ([Ev]J[Lv]t. Since this number is dyadic rational and its numerator is equal 
to unity, it may be represented in the form ([Ev]J[LvDr= 2TJ2'Yv where 'Yv>T is 

unknown and T is the subscript of the P T-net corresponding to the r-dimensional 
cube Kr. From the letter equality we get 

(2-1) 

According to the definition of the P T-net, any binary parallelepiped of the cube 
Kr of volume 2TJ2'Yv contains 2T points from 2'Yv points of the PT-net (Sobol' 

1969). Hence, if 'Yv satisfies (2-1) then cube :£~ contains 2T points. By the 
Lipschitz condition and the definition of cube :£~, the inequality 

is satisfied for any point IlE:£~ ofthe 2T points. Thus, an arbitrary value of $v(a) 
may be approximated to the accuracy of Ev by 2'Yv points of the P T-net. The value 

of T may be calculated using the formulas presented in the Addendum. 
If for some Vi and vJ· [Ev.]![Lv]<[Ev]/[Lv], then :£"dC:£"d. Hence, by choosing 

J l J J 

a value of n satisfying the equality 2n=max2'Yv, v=I, ... ,k, we get the finite E-
v 

approximation $(De) of the set $(D). In this case the inequality I$v(a)­
$v (1l)I::SEv , v=I, ... ,k, is satisfied where aEKr, and Il is one of the 2n points. 

Remarks. 

1. Generally speaking, the set of points approximating $(D) may not belong 
to $(D), since it can incorporate the points with coordinates 
$t*<$v(a)::S$t*+Ev as well as the points that are not feasible due to 
functional constraints. By transforming the functional dependences into 
pseudocriteria $Hl(a), ... ,$Hp(a) we get, in analogy to what was 

7 A dyadic number is a number of the form p/2m where p and m are natural numbers. 
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proved above, the approximation of the feasible solutions set ct>(D) by 
the points «I»(a) whose k + p coordinates satisfy the functional and 
criteria constraints to the accuracy of E. 

2. The estimate of the approximation process convergence rate, considered 
in the previous theorem, is of an a priori nature. In other words, having 
specified the admissible errors Ev of criteria ct>v, and knowing constants 

r 
Lv (or L Iiv), one may approximate the whole of the feasible domain 

j=l 

with a given accuracy for any function corresponding to these constants. 
To do so one has to calculate the criteria at the points of the P T-net the 
number of which is specified by the theorem. However, this is an estimate 
since it takes into account any, even the "worst", function of the class. 
Hence, for a concrete problem, the number of trials needed for the 
approximation is less than the one provided by the aforementioned esti­
mate. Similar estimates for the problems of finding the absolute extremum 
of functions satisfying the Lipschitz condition have been obtained in a 
number of works by alternative methods. It is appropriate to mention 
here that an interesting estimate has been obtained in (Sobol' 1987). 

The estimate of the convergence rate considered in Theorem 1 (as well as the 
majority of a priori estimates used in approximate methods) is generally applicable 
for the theoretical determination of the number of trials. However, it is, as a 
rule, inapplicable for solving engineering problems. The number of points needed 
for calculating the performance criteria may be so large that the speed of present­
day computers may prove to be inadequate. This difficulty may be overcome by 
developing "fast" algorithms dealing not with an entire class of functions but 
taking into account the features of the functions of each concrete problem. 

For approximating a feasible region ct>(D) such an algorithm may be constructed 
in the following way. (Although all subsequent considerations presume the satis­
faction of the Lipschitz condition, they are valid as well for the special Lipschitz 

r 

condition if constant Lv is replaced by L Iiv). 
j=l 

Let the Lipschitz constants Lv, v=l, ... ,k, be specified, and Nl be the subset 
of the points from D that are either the Pareto optimal points or lie within the 
E-neighborhood of a Pareto optimal point with respect to at least one criterion. 
In other words, ct>V<ao):sct>v(a):sct>v(ao)+Ev where aOEP, and P is the Pareto 
optimal set. Let also N2=DW1 and Ev>Ev where Ev is a certain number defined 
in proving Theorem 2. 

Definition. A feasible solutions set ct>(D) is said to be normally approximated 
if any point of set N 1 is approximated to an accuracy of E, and any point of set 
N2 to an accuracy ofE. 
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Theorem 2. There exists a nonnal approximation ct>(DE ) of a feasible solutions 
set ct>(D) (Statnikov and Matusov 1989). 

Proof. Let the values of criteria be calculated at N points of the P T-net, from 
among which we single out the feasible solutions, DN , and the Pareto optimal, 
PN , sets. Also, let N! be a subset of the vectors of N specified points whose 
images are either Pareto optimal points or lie in the E-neighborhood of a Pareto 
optimal point «I»(Jl) with respect to at least one criterion. Besides, we put 
Nz = DNW1 and refer to D those of the N points that satisfy the functional and 
criteria constraints to an accuracy of E. 

Step 1. Consider an arbitrary point aEM. Let ~= lct>v(a)-ct>v(Jl)-evi. (If 
a ltD then ct>v(Jl) is replaced by ct>t*.) Let us place a at the center of cube 
K(i whose edge length is 2J<f;/Lv. For any etEK(i we get 
lct>v(i)-ct>v(et)I~LvmaxlaroJ:5~. If the cube's edge length is min2~/Lv 

J v 

then the latter inequality holds for all v. Let us perfonn the operation for all 
points from PN and choose the cube K(i edge length min min2~/Lv' Then we 

~J'N v 

arrive at a cube with the center at a such that K(inN! =0. Upon constructing 
the cube for anyaENz and finding K, = _U ,Ka we choose a point «EN! and 

«EN2 

construct for it cube K& with the center « and the edge length min 2eJLv. 

Then the inequality 

lct>v(<<)-ct>v(et)I~Lvmaxl&raA~ev, v= 1 , ... ,k 
J 

v 

is valid for any etEK&. LetK2= . U ,K& andK'=K,UK2. Considerthecomple­
«EN[ 

ment Kr\K' where K r is the initial cube/parallelepiped. 

Step 2. Since K' is a union of cubes, Kr\K' may be represented in the fonn 
of a finite number of nonintersecting parallelepipeds. By defining Kl and 
UKI=K2 in a similar way for all of the previous parallelepipeds IIi, we arrive 
i 

at the region K' UK2, which is a union of a finite number of cubes. The most 
promising points of the region, belonging to N" are approximated to an 
accuracy of E. The rest of the points are approximated to a worse accuracy 
E and are of no interest in constructing the Pareto optimal set. It should be 
noted that the Pareto optimal set on the second step must be chosen from the 
union of the Pareto optimal set obtained on the first step and the set of feasible 
points obtained during the second step. The mth step is perfonned in a similar 
way. After perfonning n steps and detennining K, i = 1 , ... ,n, we get 
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n . 
K r\ U K'=0, that is, cover the whole K r with a union of cubes whose points 

i=1 

are approximated with a desired accuracy. This completes the proof of the 
theorem. 

It should be stressed that this algorithm is in many aspects analogous to 
the one proposed by several authors in considering single-criterion problems 
(Yevtushenko 1971). 

However, here we can obtain a "faster" algorithm, since in passage to the 
r r 

class with the special Lipschitz condition, either L Uv-:5.L~ or L Uv-:5.Lv·r. 
j=1 j=1 

Hence the cubes covering the whole of Kr will be larger than in the case of the 
functions subjected to the Lipschitz condition, and the whole of the cube will 
be covered more economically. Besides, as noted, we are using highly unifonn 
PT-nets. This also results in a "faster" approximation of the feasible region. 

2-2. The Pareto Optimal Set Approximation 

Since the Pareto optimal set is unstable, even slight errors in calculating criteria 
$v(a) may lead to a drastic change in the set. This implies that by approximating 
a feasible solutions set with a given accuracy we cannot guarantee an appropriate 
approximation of the Pareto optimal set. 

Let us consider the example illustrated by Figure 2-4 where the feasible region 
is represented by a triangle. Here the vertex $(P) is the only Pareto optimal 
point and the approximation of $(D) is shown by dots and crosses. The Pareto 
optimal set of this approximation (shown by crosses) is seen to differ drastically 
from $(P). 

This instability is one of the major reasons why the problem of approximating 
the Pareto optimal set proved to be rather complicated. Although the problem has 
been tackled since the 1950s, a complete solution acceptable for the majority of 
practical problems is still to be obtained. Nevertheless, promising methods have 
been proposed for some classes of functions (Stadler and Dauer 1992; Liebennan 
1991; Ozernoy 1988; White 1990). Let us consider some of them in brief. 

Linear Problems 

In this case, the theorems about the Pareto optimal set structure, in particular 
the well-known Arrow-Barankin-Blackwell theorem, allow construction of the 
set P in a straightforward manner (Gass and Saaty 1955; Kornbluth 1974). 
However, in practice, methods generalizing the well-known simplex method of 
linear programming are used. Some interesting methods for solving the problem 
in question are suggested in (Steuer 1986; Dauer and Saleh 1992; Cohon et al. 
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Figure 2-4 Instability of the Pareto optimal set. 

1988; Benayoun et al. 1971). This issue is considered in the rather extensive 
literature (Isennann 1977; Zeleny 1974; Zionts and Wallenius 1980). 

Concave Problems 

These problems are commonly solved using the Karlin theorem stating that the 
Pareto optimal set coincides with the global minima set of the family of functions 

k 

of the fonn L Aj<Pj(a) where Al+ ... +Ak=l, Aj>O (see, e.g., Karlin (1959)). 
j=1 

The following result concerning the structure of the Pareto optimal set in the 
convex case is also used. 

k k 

S",(A) = {4»(a) I L Aj<Pj(a):5 L Aj<Pj(ao), aOED}; 
j=1 j=1 

k 

M= U S"'(A),A={(A}, ... ,Ak)IAj>O, L Aj=I}. 
A.A j=1 

Then, the Pareto optimal set is contained in the closure of the set M. 
The proof of this theorem is given in many references (e.g., Dubov, Travkin 

and Yakimets (1986). 
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Some of the most important results in the theory of multicriteria optimization 
of concave functions are the formulations obtained by Kuhn et al. (Kuhn and 
Tucker 1951). 

Other Problems 

Here, the results that concern the structure of the Pareto optimal set have also 
been obtained (e.g., Da Cunha and Polak (1967)). The majority of methods for 
approximating the Pareto optimal set in problems that are neither linear nor 
concave are divided into the following two classes. The first class incorporates 
the methods based on minimization of various functions (Steuer and Choo 1983; 
Dyer et al. 1992; Benson 1992). Very often such functions are combinations of 

k k 

the criteria, such as [L (A;<I>;)S] lis where s2:: 1, A;>O, 2: A;= 1 (Merkur' ev and 
;=1 ;=1 

Moldavskii 1979; Gearhart 1979). The combinations may be represented by the 
families of distances d(x*, CI»(a)) where x* is an "ideal" vector, such as 
x*=(O, ... ,O), and CI»(a) is a point belonging to the feasible solutions set (Stadler 
1988). Naturally, point CI»(ao) corresponding to the minimum distance d, is a 
Pareto optimal point. However, in the case under consideration, the set of points 
realizing the minima of the combinations does not form the whole of the Pareto 
optimal set. Therefore the major difficulty is related to finding the conditions 
assuring density of the points (Kelley 1957) in the Pareto optimal set. The 
density allows approximation of P. Thus, the approximation method discussed 
in Molodtsov and Fedorov (1979) is based on the use of a special kind of criteria 

k 

combination. Summation of the conventional linear combination 2: A;<I>;(a) and 
;=1 

a certain "additional" function assures density of the points corresponding to the 
minimum of the combinations in <I>(P). In Molodtsov and Fedorov (1979) the 
so-called ill-posed problem of the Pareto optimal set approximation is analyzed. 
The solution proposed in the work is obtained using the Hausdorff metric, which 
is discussed in the following. Similar approaches were employed in Popov (1981), 
Tanino and Sawaragi (1980), Dubov et al. (1986). The possibility of using the 
Hausdorff metric imposes certain constraints on the system of preferences of the 
decision maker. Besides, in using the previous methods one has to find the 
criteria combination global extremum to obtain a point belonging to P. Often 
this may require too much computer time. 

Some interesting results related to applications of methods of the class under 
consideration are obtained in (Eschenauer 1988; Koski 1988; Ester 1987). 

The other class comprises methods based on covering a feasible solutions set 
with subsets of a special shape: cubes, spheres, etc. Owing to the conditions 
imposed on the criteria, the cubes/spheres are chosen in such a way that all the 
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points lying within them were approximated with a required accuracy. One can 
approximate a feasible solutions set <I>(D) by covering it with the cubes and then 
singling out the Pareto optimal points from the approximation of D. After that 
by performing necessary operations, taking into account the fact that the problem 
in question is ill-posed, one can construct the approximation of the Pareto optimal 
set. The methods of this class are more versatile (as far as the types of functions 
are concerned) than those of the first class. In Sukharev (1971) the problem of 
finding the optimal strategy for covering a set K with identical cubes was solved. 
It was also analyzed in a number of other works (see, e.g., Yevtushenko and 
Mazurik 1989). 

Next we present a second-class method that has been developed without either 
using the Hausdorff metric or imposing any constraints on the designer's system 
of preferences. Besides, we use uniformly distributed sequences of points that 
allow us to hope that the resulting algorithms for approximating the Pareto 
optimal set are among the "fastest" ones. The only requirement is that the criteria 
are continuous and satisfy the Lipschitz conditions (Statnikov and Matusov 1989). 

Let P be the Pareto optimal set in the design-variable space; <I>(P) be its image; 
and E be a set of admissible errors. It is desirable to construct a finite Pareto 
optimal set <I>(P E) approximating <I>(P) to an accuracy of E. 

Let <I>(DE ) be the E-approximation of <I>(D), and P E be the Pareto optimal 
subset in DE. As has already been mentioned, the complexity of constructing a 
finite approximation of the Pareto optimal set results from the fact that approximat­
ing the feasible solutions set <I>(D) by a finite set <I>(DE ) to the accuracy of E, in 
the general case one cannot achieve the approximation of <I>(P) with the same 
accuracy. This is due to the fact that the feasible point approximating a certain 
«I»(Il)E<I>(P) may be "knocked out" by another feasible point in selecting the 
Pareto optimal points from the E-approximation of the feasible solutions set (see 
Fig. 2-5). As a result, «1»(11) is not approximated by any of the selected Pareto 
optimal points. Such problems are said to be ill-posed in the sense of Tikhonov 
(Vasil'ev 1981). Although the latter notion is routinely used in numerical mathe­
matics, let us recall it here. 

Let P be a functional in space X, P : X~Y. We suppose that there exists 
y*=infP(x), and Ve(y*) is the neighborhood of the required solution y*. Let us 
single out an element x* (or a set of elements) in space X and its 8-neighborhood 
V&(x*) and call x~ a solution to the problem of finding the extremum of P if the 
solution satisfies simultaneously the conditions x~EV&(x*) and P(x~)EVeCy*). If 
at least one of the conditions is not satisfied for arbitrary values of E and 8 then 
the problem is called ill-posed (in the sense of Tikhonov). 

An analogous definition may be formulated for the case when P is an operator 
mapping space X into space Y. Let us set 
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Figure 2-5 Non-Pareto point <I> (<<) looks suspicious. The truly Pareto point <I> (<<0) 
lies in its E-neighborhood. 

where E~O, and let P : X ~ Y be an operator relating any element of X to its 
Pareto optimal subset. Then in accordance with what was said before, the problem 
of constructing sets ct>(DE) and ct>(P E) belonging simultaneously to the E-neighbor­
hoods of ct>(D) and ct>(P) respectively, is ill-posed. Of course, in spaces X and 
Y, the metric or topology (Kelley 1957) must be specified that corresponds to 
the system of preferences on ct>(D). 

Let us define the VE-neighborhood of a point ~(ao)Ect>(ll) as VE 

={~(a)Ect>(ll): 1ct>v<ao)-ct>v<a)I~Ev, v=1, ... ,k}. 
Next we have to construct a Pareto optimal set ct>(P E) in which for any point 

~(ao)Ect>(P) and any of its E-neighborhoods VE there may be found a point 
~(Il)Ect>(PE) belonging to VE • Conversely, in the E-neighborhood of any point 
~(Il)Ect>(P E) there must exist a point ~(ao)Ect>(P) (see Fig. 2-6). The set ct>(P E) 
is called an approximation possessing property M. 

An approximation ct>(P E) will be said to possess the M I-property if for any point 
~(ao)Ect>(P) and any its E-neighborhood VE , there exists a point ~(Il)Ect>(PE) 
belonging to VE • 

Let there have been constructed ct>(DE), an approximation of ct>(D). 
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Figure 2-6 Approximation of Pareto optimal set <P (P) by a finite set. 

Lemma 1. If the conditions of Theorem 1 are satisfied, then there exists an 
approximation cIl(P~) possessing the MI-Property. 

Proof. The lemma will be proved by analyzing the neighborhoods of the so­
called "suspicious" points from <I>(DE ) , that is, the points to whose neighborhoods 
the true Pareto optimal vectors may belong. If we find new Pareto optimal vectors 
in the neighborhoods of the "suspicious" points then these vectors may be added 
to <I>(PE ). Taken together with <I>(PE ), they form the E-approximation of a Pareto 
optimal set (Matusov and Statnikov 1987). 

Let us determine the set of "suspicious" points. Consider cI»(a)E<I>(PE), and 
let 

M:={cI»(IJ)E<I>(DE) : Vv <l>v(IJ)~ <l>v<a )}, 

~={ cI»(IJ) EM: : 3v <l>v(IJ)-<I>v<a):5~}. 

(Here, the number E"I2 has been taken arbitrarily. Instead of this, one can take 
any number less than Ev.) Let 
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M;=«I»(DE)\(M~U<I>(PE»' Ma=~UM;, M=UMa. 
a 

Let us consider a point «I»(ao)EM. If <I>(PE) contains no point «I»(P) such that 
<l>V<P)::5<1>v<a O)-Ev for any v, then «I»(ao) is a "suspicious" point. The set of 
suspicious points will be denoted by SM. It is easy to see that the points of <I>(P) 
that are not approximated by the set <I>(P E) with the accuracy of £ may lie only 
in £-neighborhoods of vectors from SM (see Fig. 2-5). Thus, if we construct a 
cube :£al with the center at point a l and the edge length min2EJLv , v= I, ... ,k, 

v 

for any point alEDE such that «I»(al)ESM, then the cube may contain true 
Pareto optimal points from <I>(P), approximated with an accuracy of £ by no 
point from <I>(P E)' 

Let E~ be small errors that can be neglected. Let us approximate <I>(:£al) n 
<I>(D) by the PT-net points to an accuracy of £', as before. (Since volume :£al 
is quite small as compared with KT, the number of points needed for the approxi­
mation is rather small.) At least one of the points of the PT-net in :£al belongs 
to the neighborhood VC:£al of a Pareto optimal point «I»(ao) if such a point 
does exist. Let us denote such a point from PT-net by «I»(y). If «I»(ao) is a Pareto 
optimal point then «I»(y) definitely improves the value of at least one criterion 
for an arbitrary point «I»(a)E<I>(P E)' If such a point «I»(y) exists it is added to 
<I>(PE). Conversely, :£al does not contain a point «I»(ao)E<I>(P), to an accuracy 
of £'. The operation is repeated for all the vectors belonging to SM. 

Let U«I»(yi)U<I> (PE)= <I>(P~) and UyiUDE=D~ where yi is a point obtained 
i i 

after performing the aforementioned procedure. Then <I>(P~) may contain points 
that are not Pareto optimal and are to be discarded. As a result, we arrive at the 
set <I>(P~), which is a Pareto optimal subset in <I>(UyiUDE) and £-approximation 

i 

of <I>(P). This completes the proof of the lemma. 
The approximation <I>(P~) thus obtained possesses the property MI' However, 

the inverse formulation is invalid in the general case, since <I>(P~) may contain 
excessive points whose analysis would be fruitless. 

The £-approximation of Pareto optimal set <I>(P~) constructed in Lemma I, is 
said to possess the property M2 if there is a point «I»(P)E<I>(P) within the £­
neighborhood of any point «I»(a)E<I>(PE). 

Lemma 2. There exists a subset <I>(P~) of the set <I>(P~), which possesses the 
property M 2. 

Proof. Let «I»(a)E<I>(P~); B be an arbitrary subset in {I, ... ,k}; and 
N<I>(a)={«I»(P)E<I>(P~):'v'vEB <l>V<a)::5<1>v<p)::5<1>V<a)+Ev V 'v'vE{I, ... ,k}\B 
<l>v(P)::5 <l>v<a)-Ev}. As before, we start by investigating the neighborhoods of 
the points a and P for which «I»(P)EN4>(a)' 

Let the condition 'v'iiE:£anD 3yE:£flnD such that 
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<l>v('Y):5<1>v(a)+E~ VvEB where E~ is small enough, be satisfied for all the PT -

net points belonging to cubes ;£u and ;£~ and satisfying the previous requirement 
for the feasible solutions set approximation. Then point ~(a) may be excluded 
from <I>(P~), since its E-neighborhood will not contain any points from <I>(P). 
By carrying out a similar procedure for all ~(a)E<I>(P~) we arrive at the set 
<I>(P~)C~(P~) possessing the required property M 2 . 

It can be readily shown that having performed these procedures (see Lemmas 
1 and 2) and obtained <I>(P~), we have actually proved the following 

Theorem 3 (Matusov and Statnikov 1985). <I>(P~) is an approximation of the 
Pareto optimal set <I>(P), possessing the property M. 

Thus, we have constructed the desired Pareto optimal set approximationS 
shown schematically in Figure 2-6. However, we have already mentioned that 
the problem of approximating the Pareto optimal set <I>(P) is ill-posed in the 
sense of Tikhonov. Also, we have pointed out that to solve an ill-posed problem 
one must specify a metric/topology in the spaces where solutions are sought. 
This metric/topology must reflect the system of preferences on <I>(D). In this 
connection, let us recall some definitions9 . 

A space X is called metric if for any pair of its elements x and y there exists 
a function d, named the distance between the elements, possessing the following 
properties: 

1. d(x, y)=d(y, x). 

2. d(x, y)2:0, d(x, y)=O if and only if x=y. 

3. d(x, y):5d(x, z)+d(z, y) for any x, y, and z. 

Examples of Metric Spaces 

Euclidean space for which d(x, y) = ~i~1 (Xi-Yi)2 weighted Euclidean space 

with d(x, y) = ~ 2 
L.. (Pi (Xi-Yi)) , and the Hemming space for which 
i=1 

n 
d(x, y) = 2: IXi-Yil· 

i=1 

A metric d is said to be adequate to the system of preferences defined on the 
pairs of vectors (x, y) from the space under consideration, if inequality 

8If necessary, the computer time needed for implementing this method may be shortened by 
constructing only the set <I>(P~) possessing property MI' Moreover, one may approximate set <I>(P) 
by the union <I>(PE)USM without obtaining <I>(P~). 

9Since this material is of a rather theoretical nature, it may be skipped by the reader interested 
only in applications of multicriteria optimization. 
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d(x, y):5d(x, z) implies that y is no less preferred than z. Here, x is the most 
preferred vector from the region under consideration, and y and z are arbitrary 
vectors. 

Let us continue considering our problem. Clearly, for each concrete case one 
has to consider a metric corresponding to the physical nature of the problem. 
The metric is to be adequate to the system of preferences in the space under 
consideration. In our opinion, there exists no metric that would be adequate to 
the system of preferences on ct>(D) in the general case. Even if it occasionally 
does exist, its construction is more complicated than the Pareto optimal set 
approximation. However, one may introduce a topology corresponding to the 
system of preferences on ct>(D). 

A topology on the space X is such a system of its subsets T for which the 
following conditions are satisfied: 

1. The union of any number of sets from T also belongs to T. 

2. The intersection of a finite number of sets from T also belongs to T. 

3. XE T (Kelley 1957). 

All the aforementioned spaces are topological. However, there exist numerous 
topological spaces that cannot be made metric. Nevertheless, the topological 
spaces both generalize and inherit several basic properties of metric spaces such 
as closeness, the neighborhood properties, convergence, etc. 

A topology may be specified at a given space in a variety of ways. Most often 
it is specified by a system of neighborhoods for any point from X. 

Let us define a topology T on X by specifying the neighborhood 

WE(x)={ct>(DE) : 'VcI»(a)EX 3cI»(P)Ect>(DE): 1ct>V<a)-<I>V<P)I:5EvV 
'VcI»('Y)E<I>(DE) 3 cI»('I)EX: l<I>v('Y)-<I>V<'I)I:5Ev, v= 1, ... ,k} 

for any xeX. 
The neighborhood WE(y) for an arbitrary y E Y, and hence the topology" on 

Y, ct>(D)CY, is specified in a similar way. 
Clearly, the topology introduced here is a Hausdorff topology satisfying the 

second countability axiom (Kelley 1957). Hence, convergence in this topology 
may be described in terms of sequences. 

As is well-known, solution of an ill-posed problem reduces to the construction 
of a regularizing sequence. In the present case this is a sequence of sets 
ct>(P Ei), j= 1 , ... 00, such that for the corresponding sequence <I>(DEi) and any Ej­

neighborhoods of sets ct>(P) and ct>(D), sets ct>(P Ei) and <I>(DEi), starting from a 
certain jo belong to the respective neighborhoods. 

Suppose that in accordance with Lemmas I and 2 sequences ct>(P;i) and 
ct>(D;i) , P;iCD;i are constructed for the sequence of sets Ej , j= 1, ... 00. Then the 
following theorem can be proved. 
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Theorem 4. Sequence <I>(P;j) is regularizing. 

Proof. From the formulated property M (which is valid for any term of sequence 
<I>(P~j» and the definition of the neighborhood We(<I>(P» (We(<I>(D»), it follows 
directly that the conditions of regularizability of the sequence are satisfied. 

Thus the problem of constructing the Pareto optimal set is solved. 

Remark. As mentioned previously, in a number of works the problem of the 
Pareto optimal set regularization is solved using the Hausdorff metric defined 
by the distance 

dCA, B) = max{sup inf pea, b), sup inf p (a, b)} 
aEA bEB bEll aEA 

where pea, b)=maxlav-bvl, and av and bv are the coordinates of vectors a and 
v 

b;A, Be X. 
The class of the problems described by this metric is rather limited, since its 

utilization for a somewhat general situation results, as a rule, in distortion ofthe 
designer's system of preferences because of, for instance, different significance 
of the performance criteria. Besides, since a variation in p may affect conver­
gence, the question arises: Why is the Hausdorff metric to be generated by the 
above or some other prespecified distance pea, b)? Therefore, in the general case 
one has to introduce a topology similarly to how it was done here. This topology 
is a generalization of the Hausdorff metric. Roughly speaking, it operates in the 
same way as the Hausdorff metric does without, however, distorting the design­
er's system of preferences. 

In conclusion of this section, we would like to note that prospects of the 
methods similar to the one presented here are connected with the development 
of "fast" approximation algorithms. Such algorithms can be based, for instance, 
on considering the problems in which the criteria belong to a more "narrow" 
class of functions as compared with the one we have studied. Thus, for a class 
of sufficient number of times differentiable functions the convergence rate may 
increase. Besides, the convergence rate may be increased by using the decomposi­
tion and aggregation methods discussed in Chapter 3. 

2·3. Example of Approximation of a Feasible Solutions Set 

Let us analyze the problem of approximation of a feasible region by considering 
the following example (Sobol' and Statnikov 1982). The vibratory system shown 
in Figure 2-7 consists of two identical masses m, =m2=m connected by springs 
whose stiffnesses are k, =k2=k and ko. Such a system depends on the three 
design variables k, "0, and m. Suppose the design variables lie within the following 
specified limits: 
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/ 

Figure 2-7 Oscillatory system. 

(2-2) 

The system can perfonn free harmonic oscillations with two natural frequencies 
WI and 002. We will suppose that 0::5001 ::5002. The fonnulas for the calculation 
of the natural frequencies are quite simple: 

(2-3) 

Such dynamic systems are considered in many textbooks on the theory of oscilla­
tions, (see, e.g. Den Hartog (1956». 

In designing an oscillatory system one has to choose the natural frequencies 
in such a way as to avoid undesirable resonance phenomena. If the designer 
wishes to decrease 002 then he may introduce the criterion 

(2-4) 

and assume that the smaller 4>1 the more perfect the system is. 
Suppose that alongside with decreasing frequency 002 the designer wishes to 

decrease the mass of the system 2m. Then he may introduce another criterion 
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<l>2=m (2-5) 

and assume that the system is the better the smaller <1>2. 
Let us consider the criteria plane shown in Figure 2-8. To each set of design 

variables (k, /CO, m), there corresponds a pair of numbers <1>1 and <1>2 calculated 
from formulas (2-4) and (2-5), and hence, a point on the criteria plane. The 
same formulas allow one to find the set of points (<1> .. <1>2) on the criteria plane, 
which are calculated with the design variables (k, /CO, m) varying within the limits 
(2-2). The set is shown in Figure 2-8. 

Consider the lower left-hand boundary of the set, formed by a segment of 
hyperbola 

(2-6) 

It can be readily shown that the points lying outside the hyperbola cannot corre­
spond to the best solution. 

To prove this statement we choose a point B (see Fig. 2-8). By drawing 
through the point a vertical and a horizontal line we get points B' and B" belonging 
to the hyperbola. Since the abscissas of the points B' and B coincide (i.e., the 
values of <1>1 at these points are equal) and the ordinate of B' is less than the 
ordinate of B (i.e., the value of <1>2 corresponding to B' is smaller), the system 
corresponding to point B' is undoubtedly better than the one corresponding to 
point B. 

Similarly, the system corresponding to pointB" (as well as to all points (except 
B) belonging to the curvilinear triangle B'BB") may be shown to be undoubtedly 
better than the system corresponding to point B. 

m** 

m* 
I 
I 

-----I--~------------....;;;::I"" 
I 
I 
I 

o~----~------------------------~~ 
.pi 

Figure 2-8 Criteria plane. 
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Hence, the best solutions should be sought among the systems corresponding 
to points belonging to a segment of hyperbola (Eq. (2-6)). This segment, shown 
in Figure 2-8 by a thick line, represents the Pareto optimal set. 

Let constraints cfJt* and cfJ~* be specified. In Figure 2-9 the set of points 
meeting these constraints is shaded. The set of design variables (k, ko, m) 
satisfying conditions (2-2) is a parallelepiped n in the three-dimensional design­
variable space, see Figure 2-10. The set of points lying within parallelepiped n 
and corresponding to curve (2-6) may readily be found. In fact, from Equations 
(2-4), (2-5), and (2-6) it follows that k+2ko=k*+2k~, and since k?:.k* and 
ko?:.k"6 in n we have k=k* and ko=k"6. 

Hence, the desired set of points is determined by conditions 

k=k*, ko=k"6, m*$m$m** 

and represents an edge of parallelepiped n (see the thick line in Fig. 2-10). 
Naturally, point (k=k*, ko=k"6, m=m**) lies on the edge. 

Let us continue by finding the set of points in n corresponding to the shaded 
region in Figure 2-9. From Equations (2-4) and (2-5) and inequalities 
<1>1 $cfJt* and <l>2$<1>~* it follows that 

Together with (2-2), these equations define the portion of parallelepiped n that 
is the feasible solutions set of points D (see Fig. 2-11). 

Let k, ko, and m be varying within the limits 2 $ k $ 6, 1 $ ko $ 4, 
2 $ m $ 5, and let us do the necessary calculations. In Table 2-1, the fragment 

o~----~--------------------------~ 
m.** ih 
'*'1 '*'1 

Figure 2-9 Feasible solutions set <I> (D) in the criteria plane. 
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Figure 2-10 Pareto optimal set P in the design-variable space. 
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Figure 2-11 Feasible solutions set D in the design-variable space. 
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Figure 2-12 Approximation of «I> (D) for N= 128 and 256. 

<P1 

I" 

<P1 

of an unordered test table is given, the first 32 trials being represented. After 
128 trials the criteria constraints <1>1'* and <I>~* proved to be equal to 4.63 and 
4.8 respectively. Figure 2-12a shows that 128 trials do not suffice to obtain a 
good approximation of the feasible solutions set in the criteria space. However, 
for N=256 the approximation is quite good, since E\ =E2=O.25 (see Fig. 2-12b). 
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Table 2-1 

c/ 1I>\(ai) 1I>2(ai) a i 1I>\(ai) 1I>2(ai) 

I 2.5714 3.5 17 1.3377 4.7188 
2 3.4545 2.75 18 2.7595 2.4688 
3 2.0 4.75 19 2.9764 3.9688 
4 1.7838 4.625 20 1.5478 3.5938 
5 2.32 3.125 21 5.0448 2.0938 
6 2.0 3.875 22 2.5468 4.3438 
7 5.3684 2.375 23 3.5385 2.8438 
8 2.4308 4.0625 24 1.5862 4.5313 
9 3.4634 2.5625 25 4.0206 3.0313 

10 1.3247 4.8125 26 2.562 3.7813 
II 3.434 3.3125 27 3.8082 2.2813 
12 2.2553 2.9375 28 3.7412 2.6563 
13 2.6197 4.4375 29 2.1504 4.1563 
14 4.1714 2.1875 30 1.8899 3.4063 
15 2.2034 3.6875 31 2.3312 4.9063 
16 2.2718 3.2188 32 1.8199 4.8594 
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Decomposition and Aggregation of 
Large-Scale Systems 

3-1. Decomposition Methods 

A large-scale system consists of a number of subsystems. For example, in a 
truck, one can separate the following subsystems: the frame, driver's cab, plat­
form, engine, transmission, and steering system. 

For the overwhelming majority of machines, there are rather many expensive 
units that can perform for a long time after the expiry of the normal period of 
the machine operation. In the case of production of millions of machines such 
as tractors, harvesters, motor cars, and machine tools, this leads to huge losses. 
This is caused by many factors, for example, drawbacks in the design. Very 
often, different departments of the design office engaged in creating a machine 
optimize their "own" subsystems ignoring others. The machine assembled from 
the "autonomously optimal" subsystems turns out to be far from perfect. A 
machine is a single whole. When improving one of its subsystems we can 
unwittingly worsen others. The subsystems are loaded in different ways and 
work in different conditions. It is desirable that the basic, most expensive units 
of a machine have equal durability and reliability indexes, be equally strong, 
etc. To meet this goal, we are to be able to find solutions hierarchically consistent 
with all subsystems. At present, such solutions are based mostly on the experi­
ence, intuition, and proficiency of a designer. 

When designing machines, one has to deal with complicated mathematical 
models. Very often, these models have many hundreds of degrees of freedom, 
are described by high-order sets of equations, and the calculation of one solution 
can take an hour or more of computer time. This implies that it is not always 
possible to solve problems such as (1-1)-(1-4) directly (otherwise, we would have 
no problem with large-scale systems). One remedy may be to split (decompose) a 
large-scale system into subsystems that can be easily optimized, and then to 
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aggregate the partial optimization results to obtain nearly optimal solutions for 
the whole system. This will allow a designer to determine requirements for the 
subsystems so as to make a machine optimal as a whole, and, by this, justify 
the proposals for designing different units of the machine. 

The significance of using decomposition methods in solving optimal design 
problems for systems of high dimensionality consists in a considerable savings 
of computer time, whereas without using these methods many problems can not 
be solved practically at all. 

At present, there are many exact decomposition methods that can be applied 
to solving problems of high dimensionality. Among them are Kron's methods 
(Kron 1963), the forces-and-displacements method (Goldman 1969), and the 
method of dynamic stiffnesses (compliances) (Craig and Bampton 1968). 

Kron uses two sources of information: equations and graphs. When partitioning 
the system into subsystems, the graph of the system is first decomposed into 
comparatively large subgraphs for their subsequent unification. These methods 
are practiced on a large scale. In all these methods, when calculating each of 
the subsystems, the influence of the cut-off part of the system is replaced by its 
reaction. To obtain the solution for the whole system, we have to take into 
account the solutions ofthe equations of all subsystems, as well as the compatibil­
ity conditions for forces and displacements at the points of cutting the system. 

Baranov, in the appendix to the Russian edition of the book by Kron (1963), 
shows that Kron's procedures are equivalent to matrix transformations such 
as the elimination of coordinates, introduction of additional unknowns, and 
permutation of rows and columns. 

Application of Kron's methods to problems of mechanics has some features 
due to the multidimensionality of the graph branches and elastic interaction 
between inertial elements. 

These methods are effective because they operate with subsystems matrices 
whose order is considerably less than the order of the matrix of the whole system. 
Note that Kron's methods are exact decomposition methods in the sense that 
they give the exact solution to the system. This solution can be obtained using 
direct methods without decomposition. However, the decomposition essentially 
facilitates the solving procedure. Apart from the exact methods, there are approxi­
mate techniques based on the decomposition. Next we consider some of them. 

The Singular Perturbation Method 

Consider a kth-order system of equations 

x=Ax+F. 

Within this system we separate m subsystems. Let us introduce a diagonal matrix 
E so that EA=A., with the elements of the matrix A. being close to unity. Then 
this system of equations can be represented by 
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m 

Ejxj=Ajxj+ L Ajjxj+Fj, i,j=l,m 
j=lj""j 

(3-1) 

where Ej is the part of the matrix E corresponding to the ith subsystem. Small 
parameters are included here as factors of the derivatives. The change of E from 
a finite value to zero, or vice versa, leads to the change of the order of system 
(3-1). Such perturbations are called singular. 

Within the matrix E, let us separate its part E" with the elements being close 
to zero. Then (3-1) can be represented in the form 

X=f(x, y, t) 
E"j=g(x,y, t). 

(3-2) 

The order of this system is k=n + p, where n and p are the dimensions of 
the vectors x and y, respectively. 

Having assumed E"=O, let us consider a more simple, degenerate system of 
the order n: 

.i=f(.i, j, t), 
g(.i, j, t)=O, 

where .i(t) and y(t) are approximate solutions of system (3-2). 

(3-3) 

Tikhonov proved the theorem establishing the conditions that guarantee the 
convergence of the solution of the degenerate system to the solution of the full 
system, as E-+O (Tikhonov 1952). 

Aggregation of Variables 

When studying systems with a large number of variables, we very often face 
the necessity of using amalgamated variables (aggregated variables, macrovari­
abIes) that are essentially less in number than the initial variables. In other words, 
the original system S 1 with n-dimensional state vector x is replaced by the system 
S2 with I-dimensional state vector z, I being considerably less than n. This 
replacement is done to mitigate the difficulties of the analysis of the system S 1 

due to its high dimensionality. There are different interesting approaches to the 
variables aggregation (Lukyanov 1981). 

Weakly Coupled Systems 

In some cases, the behavior of a whole system can be described in terms of 
characteristics of its subsystems. In this connection, we encounter the problem 
of quantitative estimation of the presence of weakly coupled subsystems. Some 
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of the estimates are given in Section 5-4. These problems are also studied in 
Tsurkov (1988) and Pel'tsverger (1984). 

In Pervozanskii and Gaitsgori (1979), one can find some widespread decompo­
sition methods for controlled systems. 

Let us dwell on the possibility of using these methods to solve optimization 
problems. For linear systems, it is advisable to use exact decomposition methods, 
since in this case we obtain the same values of the performance criteria as when 
performing direct calculations. If this way does not lead to reducing the time 
necessary for the computations, one should use approximate methods. However, 
when doing this, it is necessary to make sure that these methods are applicable 
to the optimization problem, because even in case the approximate solutions of 
the system are obtained with sufficient accuracy, the error in calculating the 
performance criteria can appear to be unacceptably large. Therefore, we recom­
mend estimating the solution accuracy that provides an acceptable error in calcu­
lating the criteria. If one meets difficulties in obtaining such estimates, it is 
necessary to calculate the values of the performance criteria for a restricted 
number of design-variable vectors by using the exact and approximate methods 
and, having compared the results, conclude about the applicability of the exam­
ined approximate method. A similar approach is described in Sections 5-2 and 
5-3. 

3-2. Construction of Hierarchically Consistent Solutions 

We have dwelt on some methods of decomposition of large-scale systems. In a 
number of cases, after having applied these methods, we can optimize a large­
scale system. However, for many systems, there are no effective methods similar 
to those described previously. There are a number of restrictions in using these 
methods. Even in the cases where these methods are applicable, the possibility 
of optimizing a large-scale system is not guaranteed yet. The reduction in time of 
calculating the system, though significant, can be insufficient for the optimization. 

To solve this problem we can use another approach associated with considering 
the whole system as a hierarchical structure (Statnikov and Matusov 1989). The 
lower level of this structure comprises subsystems, whereas the higher level is 
the system as a whole. In many cases, the optimization can be done more simply 
at the lower level. Therefore, by using the results of the optimization at the 
lower level and, by this, reducing the number of competing solutions for the 
whole system, we can optimize the system in reasonable time. Such an approach 
was proposed comparatively recently, and only the first steps have been made 
in this direction (Krasnoshchokov et al. 1986). In particular, this is true for 
the methods proposed here. Nevertheless, the obtained results can be used for 
optimization of many large-scale systems. 

Since the proposed approach is based on the optimization of the whole system 
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through the optimization of its subsystems, we briefly describe the relation 
between the criteria for the system and subsystems. There are three possibilities 
for this relation. 

1. Some of the criteria of the subsystem can implicitly affect the perfor­
mance criteria of the system as a whole, and very often, such subsystem 
criteria are absent from the list of the performance criteria of the whole 
system. This situation is typical for the majority of complex engineering 
systems. 

2. Some of the system criteria cannot be calculated at the subsystem level. 

3. There are criteria that may be calculated both for the whole system and 
its subsystems. 

The first two items are sufficiently simple. The third item is the most compli­
cated. 

To illustrate the last two items, let us consider the following example. In the 
structure of a slotting machine (a slotter), it is natural to separate three subsystems: 
the table, column, and hydraulic drive. The performance criteria for this system 
are the metal consumption, vibration resistance, processing accuracy, wear resis­
tance of the guideways and tools, and dynamic forces in the junctions. All the 
criteria (apart from dynamic forces that can be determined only at the system 
level) can be calculated through the criteria of the subsystems: the table (the 
mass of the bed, the vibration amplitude of the workpiece, and wear resistance 
of the table guideways); the column (the mass of the column, the vibration 
amplitude of the cutting tool, and wear resistance of the ram guideways); and 
the hydraulic drive (the mass of the drive, the hydraulic cylinder diameter, and 
leak-proofness of the hydraulic drive). 

In what follows, we give three ways (approaches, schemes) of searching for 
hierarchically consistent solutions in machine design problems. The first two 
schemes (A and B) are intended for optimization in comparatively simple cases, 
whereas the third scheme (C) is applicable to more complicated systems. 

These three schemes do not cover all possible problems of machine design. 
However, by combining these basic approaches we can obtain other different 
methods for solving optimization problems for complicated systems. 

The three methods have the following common features. 

1. It is supposed that some of the mathematical models cannot be effectively 
optimized with respect to the whole criteria vector «1», because it takes 
a great deal of computer time to formulate and solve problem (1-1)­
(1-4). However, the calculation of the values of particular performance 
criteria <l>v needs a reasonable amount of computations. 

2. The system is "partitioned" into subsystems. The couplings connecting 
the subsystems will be called external. To separate some of the subsys-
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terns as autonomous, it is necessary to analyze the interaction of this 
subsystem with all other subsystems, as well as the external disturbances 
applied to the subsystem by environment. For example, in problems of 
dynamics, to determine the external disturbances they use the D' Alambert 
principle, the general dynamical equation of D' Alembert-Euler, and 
Lagrangian equations. 

3. There are one or several criteria <I>,,(a(i)) of the ith subsystem that domi­
nate corresponding criteria of other subsystems. This means that decreas­
ing (increasing) the values of the criterion <l>v<a(i») (by no less than a 
certain amount Ea) entails decreasing (increasing) the value of the respec­
tive criterion <1>,,((1) for the whole system, compared with <I>,,(a). Here, 
a and p are the design-variable vectors of the system, and a(i) is the 
ith subsystem's vector of design variables corresponding to the vector 
a. This condition implies that the system contains one or several subsys­
tems that determine the quality of the system in terms of the vth criterion. 

4. It is supposed that the subsystems can be optimized by using methods 
of Chapter 1. 

5. Let t be the total time of calculating the values of <I>,,(a(i»), i= I,m, and 
T be the time of calculating the value of <I>,,(a) , where a is the system 
design-variable vector corresponding to all a(i). Then the inequality 
t~T is supposed to hold. 

The idea of the optimization of the whole system consists in the following. 
First, when optimizing each (ith) subsystem, we obtain for this subsystem a 
pseudo-feasible solutions set15i, which, as a rule, is somewhat larger than the 
true feasible solutions set. After this, we compile the vectors for the whole 
system using the respective vectors from the sets 15i. On the thus obtained domain, 
we check whether the criteria and functional constraints of the system are satisfied 
and, as a result, obtain the feasible solutions set D for the whole system. Finally, 
we search for the optimal solution over the set D. 

The main point of this idea is the item 3. Let us consider it in more detail. 
We will say that the pseudo-feasible solutions set15i for the ith subsystem is 

dominant if the condition a(i) f/. 15i entails a f/.D. 

Assertion 1. In the systems satisfying the aforementioned conditions, there exist 
subsystems and criteria <l>v<a(i») such that the corresponding pseudo-feasible 
solutions sets 15i are dominant. 

Proof. Let <1>" be a criterion satisfying the condition 3. The corresponding 
criterion constraint is given by <l>v<a)= <l>t*. Here, as before, a(i) is the design­
variable vector of the ith subsystem determined by the vector a. Denote by 
<I>~ ** =<I>V<a(i)) the constraint on the criterion <1>" for the ith subsystem. Let for 
some p(i) f/. 15i, that is <l>v<p(i))> <I>~ **, the inequality <I>,,(p(i»)2:<1>~ ** +Ea take 
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place. Such p(i) can always be chosen, since it is allowable to correct <I>~* and 
hence, <I>~**. Then, by the condition 3, for any vector p, which the vector p(i) 
of the ith subsystem corresponds to, we have <I>,,(p»<I>,,(a)=<I>~*, that is, p f1.D. 

This assertion makes it possible to discard the design-variable vectors a without 
calculation of the whole system, if the corresponding subvector a(i) violates the 
constraint <I>~ **. In other words, the optimization of the whole system is reduced, 
to a considerable extent, to the optimization of its subsystems. The schemes 
given next are based on this idea. These schemes are presented in the order of 
increasing their complication. We consider different relationships between the 
design variables of the system and its subsystems, discuss basic possibilities of 
simplifying the original model, the ways of determining external disturbances 
for subsystems, etc. 

Scheme A 

Let us have the mathematical models of subsystems that can be optimized (in 
reasonable time). We suppose that each component of the design-variable vector, 
a=«Xlo ... ,~), of the whole system is a component of at least one subsystem 
vector a(i) and, on the other hand, any component of the vector a(i) is a component 
of the vector a. Therefore, for each of the subsystems, the vector a(i) is uniquely 
determined by the vector Q[. 

Taking this into account, we optimize the whole system. For each of the 
subsystems, we determine <I>~ ** satisfying condition 3. Regarding these con­
straints we construct pseudo-feasible solutions sets lJi, see Chapter 1. For doing 
this, within the parallelepiped II of the design variables for the whole system, 
N points are generated (in accordance with Section 1-2), and for each of these 
points, ai, j=I,N, the values <I>,,(ai(i» , i=l,m, are calculated. The value 
<1>,,( ai(i+ 1» is calculated only if aj(i) E lJi. If it turns out that for any i and fixed 
j, ai(i) E l]i, then, according to the condition 3, we will assume that a i belongs 
to a certain set 15 that is then used for determining the feasible solutions set D, 
DC D. Otherwise, Q[i f1.D, and this vector is considered no longer. 

For all Q[i ED, we calculate the system as a whole, and also all <I>,,(ai ). 
Having done this, we determine <I>~*, v= 1 ,k, and thereby, the feasible solutions 
set D. If the set D turns out to be empty (D=0), one should increase the number 
N of the points generated within the parallelepiped II. After having found Din 
accordance with Chapter 1, we construct the Pareto optimal set P. 

It should be noted that if it is possible to approximate the sets Di , the approxima­
tion of the feasible solutions set for the whole system can be constructed. 

Example 

Multicriteria optimization of cutter loaders (Dokukin et al. 1987). The mathe­
matical model was taken that described the dynamics of cutter loaders with 
branching drive diagram and nonsymmetrical arrangement of cutting members. 
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This model is represented by a high-order system of nonlinear differential equa­
tions with stochastic functions on right-hand sides. The calculation of the model 
requires a lot of computer time, and for this reason, it is impossible to optimize 
the cutter loader to a sufficient extent by using conventional optimization tech­
niques (the model contains 25 design variables and 20 criteria to be optimized). 
In this connection, we decomposed the system into three subsystems: drives, 
the arrangement of the cutter loader, and arrangement of the cutting tools on the 
machine. 

The performance criteria have been taken as follows. The first criterion, <1»1, 
reflects the unbalance of the actuator; the criteria <l»r<l»s characterize the nonuni­
formity of transmission loads when cutting the coal massif; <1»6 and <1»7 represent 
the nonuniformity of the driving torque of the electric motor; <1>8 and <1»9 give 
the life expectancy of the transmission with respect to the fatigue strength; <1»10 
determines the probability of the electric motor reversal; <1»11 and <1»12 describe 
vertical displacements of the goaf side and face side of the machine housing and 
are used for estimating the stability. The criteria <1»13-<1»16 characterize the varia­
tion of vertical displacements for each of the supports of the cutter loader, while 
the others describe the excess over the limiting level of the support displacements. 

After the optimization of the first subsystem with respect to the criteria <1»2-
<1»9 we obtained the pseudo-feasible solutions set that contained 14 models. For 
these models, we calculated the criteria <1»11-<1»20 related to the second subsystem. 
The constraints for these criteria were satisfied by 9 of the 14 models. The third 
subsystem was optimized with respect to the force unbalance of the cutting 
member. Four of the nine models satisfied the constraint related to this criterion. 
According to Scheme A, for these four models, we calculated the criteria related 
to the whole system. After that we determined the optimal solution. 

The optimization permitted us to reduce the dynamic load of the drive, to 
make the cutter loader more stable, and to improve other performance criteria. 

It should be mentioned, however, that this procedure is effective only when 
applied to comparatively simple mechanisms, machines or their units. In more 
complicated cases, the assumption concerning the relationship between the vector 
of design variables a of the whole system and respective vectors a(i) for subsys­
tems is not valid, and we have to use Schemes B and C. Here, the situations 
are possible, when the design-variable vector of the whole system contains 
components that are absent from the subsystem level. This can take place, for 
example, if it is impossible to take into account correctly some external couplings 
when calculating the subsystem. Therefore, these couplings are usually ignored. 
Vice versa, among the subsystems design variables, there can be those weakly 
(if at all) affecting the performance criteria of the system to be optimized. As a 
rule, these design variables are not included in the list of design variables of the 
whole system. 

There are also other ways for obtaining optimal solutions for the considered 
systems. For example, different criteria may require considerably different time 
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for their calculations: say, the calculation of the ith criterion takes seconds, while 
the calculation of the pth criterion requires minutes. In this case, we divide the 
set of all criteria into n groups so that the time required for calculating criteria 
of some group significantly differs from the time corresponding to criteria of 
any other group. These groups are arranged in order of increasing computation 
time. Then we optimize the system with respect to criteria of the first group, 
and thus construct the pseudo-feasible solutions set D1• After this, for the models 
fromD1, we calculate criteria of the second group, determine criteria and func­
tional constraints, and construct the setV2• The process is repeated until the set 
Vn=D is constructed. Obviously, this procedure considerably reduces the time 
of optimizing the whole system. 

Scheme B 

Unlike Scheme A, we assume here, that the original model is simplified so 
that it becomes amenable to optimization. Here, external couplings between 
subsystems are retained, and the simplification is due to either aggregation of 
solutions for subsystems (this has been mentioned already) or aggregation of 
internal design variables of the subsystems. For example, if the subsystem con­
tains masses m1> ... ,mno they (or part of them) can be replaced by the mass 

p 

M = L mi, p'!'fn. This reduces the number of the subsystem design variables, 
i=1 

the criteria, as a rule, being modified. 
Let the optimization of the simplified system be carried out, and the correspond­

ing feasible solutions set D be constructed in accordance with Chapter I. Consider 
the ith subsystem, i= I,m. External disturbances acting on this subsystem are 
determined by taking into account design-variable vectors belonging to 15. 

Consider a vector 'Y ED and separate the components of 'Y that are used when 
calculating external disturbances for the ith subsystem. These components form 
the vector of external couplings, -y, for the given subsystem. Given the external 
disturbances, we calculate performance criteria cI>V<Cl(i») and determine con­
straints cI>~** and pseudo-feasible solutions sets Vi for each subsystem. Note that 
when optimizing the ith subsystem, its internal design variables are not aggregated 
but used in the form in which they are included in the original system. 

By virtue of condition 3, the vectors Cl for which Cl(i) ~Vi are excluded from 
further consideration. 

The obtained sets Vi are unified to form a whole set. For simplicity, let us 
assume that there are only two subsystems. Consider the aforementioned coupling 
vector -y. We separate all vectors Cl of Vi and p ofD"2 that have been obtained 
when optimizing the subsystem under consideration by taking account of the 
vector -y, and form augmented vectors (Cl, -y, P). This operation is repeated for 
all other vectors of external couplings similar to -y . We call this operation 
the concatenation of subsystems. If there are more than two subsystems, their 
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concatenation is made in a similar way. As a result, we obtain the set of vectors 
of the whole system b. At this point, we are to check whether the obtained 
vectors satisfy all the criteria and functional constraints that were determined 
when optimizing design variables corresponding to the simplified model. In the 
general case, the set b reduces after this check, and we obtain the set Deb for 
which criteria of the original system are calculated, and the feasible solutions 
set D is found in accordance with Chapter 1. 

It should be noted, however, that the set D can appear to be empty. This may 
take place if, when optimizing the ith subsystem, we cannot construct the whole 
feasible solutions set for this subsystem with acceptable accuracy. If D turns out 
to be empty, one should go back to the stage of the subsystems optimization, 
calculate a number of vectors afi) E lJi and check whether D is nonempty. This 
has to be repeated until we obtain D #- 0. However, if we succeed in constructing 
approximations of the sets 15i , i= I,m, we can guarantee not only that D is 
nonempty but also that 15-::JD. The latter is established by the following assertion. 

Assertion 2. The set D is an approximation of the feasible solutions set D, and 
15-::JD. 

Here we do not give the proof of this assertion. This proof is similar, with 
the exception of some minor details, to the proof of Assertion 3 given later. 

Note that attempts to simplify the original model by means of aggregating 
internal design variables of subsystems, provided external couplings are con­
served, are widely practiced in design. A modification of this scheme has been 
used for solving the problem from Section 3-3. 

Scheme C 

Suppose the simplification of the original model corresponding to Scheme B 
does not permit us to optimize subsystems in reasonable time. In this case, we 
can try to achieve success by ignoring some couplings between subsystems or 
aggregating these couplings as is done with internal design variables of subsys­
tems in Scheme B. As a result, the number of criteria can reduce compared with 
the original model. The very criteria can appear to be altered too. 

If such a simplification of the model permits us to optimize it, the solution 
reduces to the application of Scheme B. If this is not the case, we suppose that 
the system contains a sufficient number of design variables that influence criteria 
of the subsystem in which they are included, and do not affect criteria of other 
subsystems. By sufficiency we understand that each of the subsystems can be 
optimized, provided the previous condition is fulfilled. This condition is also 
necessary because, if it turns out that criteria of some subsystem depend on all 
or almost all design variables of the whole system, it will be difficult to optimize 
this subsystem as the whole system. If this condition is satisfied, we can optimize 
subsystems using the following two ways. 
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1. Suppose we can optimize the simplified system for fixed values of the 
design variables not influencing the ith subsystem i = I,m. In other words, 
we can optimize the simplified system in reasonable time, having fixed 
the system design variables that do not influence criteria of the examined 
subsystem. External disturbances acting on the subsystem are determined 
as a result of computations related to the simplified model. 

2. If the assumption of item 1 is not valid, the simplified model is not 
considered. In this case we construct simplified models for each of the 
subsystems. The simplification of the subsystem model is regarded as 
acceptable if at least one of the subsystem performance criteria can be 
calculated with sufficient accuracy and, in addition, the constraint related 
to this criterion permits us to exclude from consideration a sufficiently 
large number of design-variable vectors «. Having been considered 
separately, such models of subsystems are not of practical interest. How­
ever, provided we have a model of the whole system and the conditions 
defined above are satisfied, these models facilitate the optimization of 
the whole system. Note here, that external disturbances acting on subsys­
tems are determined not from the model of the whole system, as it took 
place previously, but from the very subsystems models. 

Both in the cases 1 and 2, the subsystem optimization differs from that in the 
previous procedures. Here, the design variables of external couplings of the 
subsystem are not fixed but vary simultaneously with design variables of other 
subsystems affecting the examined one. 

So, let all subsystems be optimized, and for each of the subsystems, the 
pseudofeasible solutions set l)i, i = 1 ,m, has been obtained according to 
Chapter 1. 

We define the concatenation operation for the sets 15j , j = 1 ,m, as follows. 
Denote by 151,2 the set consisting of vectors «= (<«1), «(2», «(1) E 151, «(2) 

E]52, such that common (i,e., influencing both subsystems) design variables 
included both in «(1) and «(2) assume equal values. (If some design variables, 
such as describing external couplings, have been omitted when calculating the 
subsystem, they are added to «(1) and «(2) when constructing vector «). We will 
denote the result of iterating this operation m times by 15}'''',m=D and call the 
set D the superstructure over the sets 151, ... ,15m• 

This definition allows us to aggregate different subsystems into the whole 
system by means of concatenation of their design-variable vectors. 

Let the sets15j be defined for allj=l,m. The set 15 consisting of the design­
variable vectors of the whole system « such that «(j) E 15j , j = 1 ,m, is called the 
pseudofeasible solutions set for this system. 

Let us give the idea of the algorithm for constructing the feasible solutions 
set D. Let us take two subsystems of those obtained after partitioning the system. 
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Suppose, there are n common design variables influencing the criteria of both 
subsystems. We denote these design variables by aV), ... ,aW),j= 1 ,2. Let us take 
an arbitrary vector «(1) E 151 and fix the values of the components a~l), ... ,a~l) 
of this vector. We assume that when probing design-variable spaces of the 
subsystems, we use the points of PT-nets for each of the subsystems. Then, since 
common design variables aV), ... ,aWJ are first in each of the subsystems, they 
will assume the same values at all points with identical numbers (see Addendum). 
In LJ2, we find vectors «(2) whose first n components assume values equal (to 
the specified accuracy) to the values of the respective components of the vector 
«(1). After this, we concatenate the vectors «(2) with the vector «0). As a result, 
we obtain vectors «=(<<0), «(2» E 151,2. If we find no vector «(2) E LJ2 that 
can be concatenated with the vector «(1), the vector «(1) is considered no longer. 
Having done this operation with all vectors of 151, we obtain the superstructure 
151,2, 

If there are m subsystems, the process of constructing the superstructure b is 
similar. We are only to provide that the concatenation condition is satisfied. 
After having constructed b we calculate the system only at the points of this 
set. 

Thus, the original model is calculated repeatedly. However, it is done only 
on the set b. If the number of elements in b is not too large, the optimization of 
the whole system in a reasonable time becomes possible. After having introduced 
constraints <1>:* we obtain the feasible solutions set D. 

Note that here, as in Scheme B, the case is possible where D turns out to be 
empty. In this case one should repeat all the described operations until D¥-0. 
However, D cannot be empty if one succeeds in approximating the sets 15i , 

i=l,m. We denote these approximations by jji. The following formulation is 
valid. 

Assertion 3. The set b being a superstructure over the sets jji, i= I,m, approxi­
mates the pseudofeasible solutions set, 15, of the whole system with a prescribed 
accuracy. 

Proof. We will consider without loss of generality that there are only two 
subsystems (m=2). For m>2, the proof is analogous. Let «(1)=(a~l), ... , 
a~l) E i51 (more exactly, «(1) belongs to a neighborhood of a pseudofeasible 
solutions set of the first subsystem) and a~~), ... ,a~~) be the design variables of 

the first subsystem that influence the second subsystem criteria. The approxima­
tion of the set <I>(15i ), i= 1,2, is constructed following the algorithm given in 
Chapter 1, except for the following. In <1>(151) and <I>(LJ2), all points must be 
approximated with the accuracy up to E(j}={E~)}, j= 1,2. These E(j) are chosen 
so as to satisfy the condition that for any v= l,k, «,pE15, and Ev the inequalities 
1<I>v<<<(j}) - <l>v(P(j)I<E~), j= 1 ,2, imply l<I>v(<<)-<I>V<P )1<Ev. Here 15 is the set 
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of design variables of the whole system that satisfy the constraints <I>{ **, Ev is 
the admissible error for the criterion <l>v. It is easy to show that EU) always exist, 
due to the continuity of functions <l>v and c10sedness of the domain D. 

The vectors of the approximation of the set <I>(lY) must approximate also any 
values of the vector (<lcI' ... ,<lc) with the accuracy up to Bcl ,··· ,Bcn respectively. 

Here, BCi is the admissible error for the design variable <lC;" To obtain this 

approximation it is sufficient to put <l>k+i=<lCi' i= l,n. Instead of cubes covering 

the domain D (see the approximating algorithm in Section 2-1), one can take 
parallelepipeds with the edges corresponding to coordinates <lci being of the 

length Bc;" The lengths of the other edges are determined from the Lipschitz 

condition, as in the case of cubes. This additional property is necessary for the 
concatenation of design-variable vectors of different subsystems. 

The concatenation results in the set of vectors aj=(a(l), ap» with 
ap) E iY. Therefore aj E iJ. Similar operation is to be done for all vectors 
a(1) E 51. As a result, we obtain the set iJ that approximates the pseudofeasible 
solutions set of the whole system with the prescribed accuracy. Indeed, let 
a ED, a(l) E 151, and a(2) ElY are vectors corresponding to a. It is known 
that «I»(a(1» and «I»(a(2» can be approximated by the vectors «1»(&(1) and <1>(&(2», 
respectively, with accuracy up to EU), where E(j) are specified beforehand. Hence, 
«I»(a) is approximated by the vector «1»(&)=«1»(&(1), &(2», with accuracy up to E. 

In case m>2 (m is the number of subsystems), we successively concatenate 
the pseudofeasible solutions set for the ith subsystem with the result of concatena­
tion of corresponding sets for previous i-I subsystems. When doing this, we 
take into account the design variables that are common for the ith subsystem 
and for at least one of the i-I subsystems. 

Corollary. The pseudofeasible solutions set 15 contains the approximation of the 
feasible solutions set, D, for the whole system. 

Proof. Indeed, let us calculate the whole system at the points of the setD. 
According to Chapter I, we determine the constraints <1>:*. Now it is easy to 
see that the points of 15 satisfying the constraints <1>:* just form the desired 
approximation of the set of feasible design variables for the whole system. This 
completes the proof. 

In connection with the aforementioned, it is interesting to discuss the possibility 
of reducing the number of vectors taking part in the concatenation of subsystems, 
and by this, reducing the very set iJ on which criteria of the whole system are 
calculated. 

In systems that we usually deal with, the monotonicity, as a rule, takes 
place, that is, performance criteria of the whole system, <l>v(a)=<i>v<<I>v(a(I), 
... ,<I>v(a(m»), monotonically depend on <l>V<a(i». 

Let us establish the condition ensuring the possibility of reducing the number 
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of the design-variable vectors. Let the design-variable vector of the ith subsystem 
be U(i)=(U(I), U(2», where u(l) and U(2) represent internal design variables of 
the subsystem and the external couplings design variables, respectively. Let us 
consider 4>v(a(i), U(i) E [Y. Let for any 1l(2), for which there exists the vector 
Il(i) = (a(l), 1l(2» E lJi, one can find the vector P(l) such that 
p(i)=(P(l), 1l(2» ElY and 4>V<u(i)=4>v<il(i). In other words, the changes of 
criteria 4>v(u(i) caused by changing the design variables of external couplings 
can be compensated by changing internal design variables of the subsystem. 
Then the following statement is valid. 

Let a E 15 result from the concatenation of vectors a(I), ... ,u(m), where U(i) 

E 15i and U(i) rI. pi(pi is the Pareto optimal set in 15i). Then «I»(a) rI. 4>(P), where 
P is the Pareto optimal set of design-variable vectors of the whole system. 

This formulation makes it possible not to concatenate vectors that do not 
belong to Pareto optimal sets of respective subsystems. This does not influence 
the Pareto optimal set of the whole system. As a result, we can construct the 
set reduced in comparison with b, and it will be sufficient to carry out calculations 
of the whole system at points reduced in number. 

The main applicability condition for Scheme C requires the existence of a 
sufficient number of design variables that do not influence the ith subsystem 
i= I,m. Let us illustrate this condition by an example of a slotting machinelO 

(unlike Section 4-3, here we consider another dynamic model of the machine). 
We can indicate the subsystems design variables that are most essential when 
calculating performance criteria for these subsystems. 

The whole system contains 25 design variables: a .. a2, a3, a4 are the stiffness 
and damping coefficients of the joint between the bed and column; a5 is the ram 
mass; a6, a7 represent the stiffness and damping coefficients of the junction 
between the ram and guideways; ag, a9, alO, all are the stiffness and damping 
coefficients of hydraulic drive units; etc. When considering performance criteria 
of a subsystem, one can conclude that it is impossible to calculate these criteria 
regarding only the design variables immediately related to this subsystem. For 
example, performance criteria of the column depend on the table design variables, 
al--a4' Therefore, to calculate criteria for each of the subsystems, one should 
take into account all system design variables influencing these criteria. 

It has been established that design variables of the table do not influence the 
hydraulic drive criteria. The column criteria depend on four design variables of 
the hydraulic drive, ag, a9, alO, and all. Design variables of the column, in 
turn, do not influence the hydraulic drive, but criteria of the table depend on the 
column design variables (a5, a6, a7)' The hydraulic drive design variables do 
not influence performance criteria of the table. It has been established that the 
first subsystem (the table) contains 10 design variables, the second subsystem 

l<7bis material was kindly given us by E. V. KhIebalov, the researcher of Experimental Research 
and Development Institute for Metalcutting Machine Tools. 
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(the column) contains 16 design variables, and the third one (the hydraulic drive) 
contains seven design variables. Thus, each subsystem contains significantly 
fewer design variables than the whole system, and the condition in question is 
fulfilled. (In general, to investigate the influence of design variables on perfor­
mance criteria of subsystems or the system as a whole, one can use the methods 
given in Sections 5-1 and 5-2.) 

In our example, Scheme C is used as follows. After having optimized the 
subsystems of the slotting machine, the set 151 of design-variable vectors is 
concatenated with vectors of lY, taking into account their common design vari­
ables, and then, with vectors oflY. The first and second subsystems are concate­
nated by their common design variables, (l1--a7. Vectors of the resultant super­
structure, 151,2, are concatenated with vectors of the third subsystem by the 
design variables (lS--all' As a result, we obtain the set b for the whole system, 
and then, the set D. 

Thus, when describing Schemes A, B, and C, we have consecutively 
considered the basic ways of simplifying the original model, depending on 
relationships among design variables and criteria of subsystems and the whole 
system. Many other ways of optimizing large systems can be obtained by 
combining the schemes given previously. However, two important cases have 
not been considered: when the very subsystems are large-scale systems and 
cannot be effectively optimized, and when there is no mathematical model 
of the whole system. Both these cases are typical for such machines as 
airplanes, ships, spacecrafts, and motor cars. 

In the first case, it is reasonable to optimize subsystems independently. For 
the optimization of each of the subsystems, it is advisable to use one of the three 
schemes described previously or their combinations. The resultant pseudofeasible 
solutions sets for subsystems are to be aggregated to form the feasible solutions 
set for the whole system. 

In the second case, as has already been mentioned, it is impossible or difficult 
to create a mathematical model of the system. For example, it is very difficult 
to create the general model of an airplane that could be calculated in reasonable 
time and, at the same time, would take into account all basic criteria (aerodynam­
ics, weight, dynamics, strength, economics, altitude, speed, differentcharacteris­
tics of the engine). As a rule, they choose another way. They create the bank 
of various mathematical models. In conformity with an airplane, these are aerody­
namic, weight, economic, and other models. Taken together, these models de­
scribe all basic criteria. Many of the models have common design variables and 
criteria, these criteria often being contradictory. 

Applying one of these aforementioned schemes (or their combination) and 
obtaining the set b for the whole system as a result of concatenation are recom­
mended. Although it is practically impossible to calculate criteria of the whole 
system exactly, very often one can evaluate the quality of the system using 
indirect approaches, for example, experiments. Estimates of the perfor-
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mance criteria obtained thus can be used for optimization of the system over the 
feasible solutions set iJ. Some other approaches can be found in Statnikov and 
Matusov (1989). It should be noted, however, that by now, there are no satisfac­
tory optimization methods for the overwhelming majority of large-scale complex 
systems. This circumstance stimulates the development of approaches similar to 
those mentioned here. 

3-3. Example: The Construction of Consistent Solutions to the Problem 
of Calculation of a Car for Shock Protection 

As has already been mentioned, optimization of large-scale systems envisages 
the substantiation of the decomposition of the system (including the generation 
of mathematical models for subsystems and finding out impacts influencing 
the subsystems), the determination of constraints and criteria vectors for the 
subsystems, finding the set of solutions consistent with all the subsystems, and 
the search for the optimal solution for the entire system. Because of great CPU 
consumption required for calculating the criteria vector of the whole system, the 
procedure of searching for the optimal solution must be organized so as to reduce 
the number of calls for the system as a whole when calculating its separate 
criteria and other characteristics as much as possible. This is demonstrated by 
the example in question (Bondarenko et al. 1994). 

Cars of serial production must meet modern requirements concerning reliabil­
ity, safety, noise level, etc. For example, there are different norms of testing 
cars for shock protection. These norms require that the car body acquires no 
damage after having been hit by a block head that has mass equal to that of the 
car and moves at a speed of 8.9 krnIh on a horizontal plane, at an angle of 30 
degree to the longitudinal axis of the car, and at a height of 500 mm above the 
ground surface. Figure 3-lh shows the tested unit of the car, which consists of 
a plastic bumper, an insert made of expanded polyurethane, and a rear panel of 
the car body. 

The experiments carried out at the plant show that the structure in question 
is imperfect: In the case of lateral impact the bumper is damaged and dents are 
left on the car body. Therefore, it is necessary to try to improve the prototype 
of the structure, to give recommendations that would provide damage protection 
of the car body, and also to find the optimal solution. 

In the problem of the car protection against a lateral impact, following factors 
must be taken into account: 

1. Large deformations and the possibility of loss of the structure's stability. 

2. Contact i.nteraction of bodies with variable contact boundary in two pairs 
of touching surfaces (the block head with the bumper and the bumper 
with the car body, Fig. 3-lh). 
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4 

Figure 3-1 General view of the structure. (a) Finite element model; (b) the schematic 
of contact interaction of bodies under the impact: (1) Block head; (2) bumper; (3) rear 
panel; (4) insert. Dashed line shows the contact between the bumper and the rear panel. 

3. The transition of loaded parts of the structure to the plastic state, the 
generation of cracks, and the material fracture. 

When calculating, we have considered the left-hand half of the rear bumper 
and rear panel of the car (Fig. 3-1a). Figure 3-1a sketchily shows the contact 
between the block head and the bumper. The other part of the car has been 
modelled by beam elements. The structure is represented by the finite element 
model consisting of 2,016 elements and 1,986 nodes. 

One calculation of the performance criteria vector for the aforementioned finite 
element model, provided the parameters values are fixed, requires more than 15 
hours. Of course, with such a consumption of computer time, the optimization 
of design variables is hardly implementable. 

Figure 3-2 presents the results of solving the dynamic contact problem in 
which the interaction forces and contact areas for block head - bumper and 
deformed bumper - rear panel pairs are to be determined. Time histories of the 
reaction force in the contact area between the block head and the bumper (curve 
1), the reaction force in the contact area between the deformed bumper and the 
rear panel (curve 2), and the system energy (curve 3) are shown. Curve 3 takes 
into account the energy dissipation. 
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Figure 3-2 The histories of the reaction force in the area of contact between the block 
head and the bumper (curve 1); the reaction force in the area of contact between the 
bumper and the rear panel (curve 2); the energy of the system, with dissipation being 
taken into account (curve 3). 

One can see from Figure 3-2 that the total time of impact, during which 
deformations increase, can be divided into two phases: before bumper comes 
into contact with the rear panel (-2. 7'1O-2s), and after contact. During the first 
phase, only the bumper contacts with the block head, at this time the force of 
interaction between the bumper and rear panel is equal to zero (curve 2). Here, 
insignificant energy change occurs due to the weak strength of the plastic (low 
elasticity modulus). By the beginning of the second phase, the bumper fails to 
resist a load because of the damage. This fact is confirmed by some stabilization 
of the reaction force acting on the bumper at this time (curve 1). The fracture 
is taken into account in a nonlinear model of the bumper material. In the second 
phase, the rear panel makes contact with the bumper, the energy dissipation 
grows due to irreversible plastic deformations. 

The investigations performed show the possibility of the decomposition of the 
finite element model into two subsystems. One of the subsystems describe the 
interaction of the block head with the bumper, while the other corresponds to 
the interaction of the deformed bumper with the rear panel. The second subsystem 
can be also defined as the subsystem describing the interaction of the block head 
with the rear panel after the destruction of the bumper. 

Thus, the behavior of the whole system during impact can be represented by 
the first subsystem on the first phase, and by the second subsystem on the second 
phase. 
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Formulation and solution of the optimization problem. 

Let us fonnulate perfonnance criteria reflecting the requirements imposed on the 
system as a whole: 

1. The mass of the structure must be minimal 

cI>!(o:)~ min; 

2. Residual defonnations of the car body after the impact must be minimal, 
i.e. 

cl>v(o:)~ min, v=2,lO. 

Here, 0: is the vector of design variables of the bumper and the rear 
panel of the body; and cl>v<o:) are residual defonnations at certain moni­
tored points. These defonnations are calculated on the basis of the full 
model describing the whole system. We take the finite element grid 
nodes to which the extemalload is reduced as the monitored points. 

There are nine of these points. Thus, the total number of perfonnance criteria 
is lO. 

Now, let us introduce the subsystem perfonnance criteria and find out their 
relation to the perfonnance criteria of the whole system. At the subsystem level, 
we specify perfonnance criteria as follows. Criteria cl>l(o:) and cI>~(o:) are related 
to the bumper. cl>l(o:) being the mass of the bumper while cI>!(o:) characterizes 
the potential energy of the bumper defonnation; 0: is the vector of design variables 
of the bumper. The increase of the bumper defonnation energy leads to the 
reduction of residual defonnations of the rear panel. 

Criteria cl>I(o:), ... ,cI>Io(O:) are related to the rear panel: cl>I(O:) is the mass of 
the rear panel and cI>~(o:), ... ,cI>Io(O:) are its residual defonnations at the monitored 
points, 0: is the design-variable vector. 

It is obvious that cI>! =cI>l+cI>I. Criterion cI>~ is to be maximized while the 
others must be minimized. 

We have analyzed the structure of the bumper prototype with 5 stiffening ribs 
and carried out relevant calculations of the criteria for the bumper and the rear 
panel. These calculations show that for the examined structure, it is impossible 
to find a feasible solution in which residual displacements of the body do not 
exceed the limiting admissible values: 

In this case, the structural optimization is necessary, that is the search for the 
structure configuration that would allow the solution of the posed problem. 
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Structural optimization of the bumper design variables based on the analysis 
of the first subsystem 

As the reaction force grows on the first phase (Curve 1 in Fig. 3-2), the absorption 
of the block head kinetic energy by the bumper grows until the bumper starts 
interacting with the rear panel. To determine the deformation energy of the 
bumper we specify displacements of the nodal points at which the interaction 
occurs. Internal forces generated by this interaction produce work over the dis­
placements. This work characterizes absorption properties of the bumper. 

For strengthening the structure it is possible to either add stiffening ribs or 
use materials with better stiffness characteristics. 

Let us consider the case of using additional stiffening ribs without changing 
the material. Three arrangements of the additional stiffening ribs, regarded by 
experts as being most promising, have been considered. For each of the arrange­
ments, we have conducted the optimization of design variables. Later, the results 
are presented that relate to the best of the three configurations. In this configura­
tion, the bumper contains 12 stiffening ribs, and the rear panel 6. 

When optimizing design variables of the bumper, the thickness of the shell 
of the bumper, al, and the heights of twelve stiffening ribs, at ... ,ab, were 
varied. 

The feasible solutions set containing four solutions represented by vectors 
126, 254, 257, and 494 i.e. «126, «254, «257 and «494 (see Table 3-1) was 
obtained. 

The investigation was carried out on the finite element model containing 727 
nodes and 950 elements. Figure 3-3 shows 12 stiffening ribs of the feasible 
structures of the bumper, as compared with five of the prototype. The ribs with 
numbers from 6 to 12 have been added. 

Structural optimization of design variables of the body rear panel based on 
the analysis of the second subsystem. The search for consistent solutions 

The second subsystem represents the structure part located in the zone of contact 
interaction between the block head and rear panel. The kinetic energy of the 
block head by the time it starts interacting with the rear panel is determined on 

Table 3-1 

~ <1>: (kg) <I>~ (N·m) 

126 3.03 34.9 
254 3.03 34.0 
257 3.04 36.1 
494 2.97 33.9 
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Figure 3-3 Finite element model of the optimal solution of the bumper. 

the basis of the full model (block head, bumper, rear panel). Note here that 
different feasible design-variable vectors of the bumper correspond to different 
values of the initial kinetic energy. Therefore, for each of the design-variable 
vectors of the bumper, one has to consider the special problem of rear panel 
optimization. In doing this, we calculated the load on the rear panel for each of 
the feasible design-variable vectors of the bumper. 

After having determined feasible design-variable vectors of the bumper (Table 
3-1), one must find design-variable vectors of the rear panel consistent with the 
bumper design-variable vectors, taking into account the fact that the velocity of 
the block head strike against the rear panel is determined for each design-variable 
vector of the bumper. When optimizing the rear panel, for each of the four 
design-variable vectors of the bumper, the search for consistent design-variable 
vectors of the rear panel was conducted. 

Besides the rear panel thickness (ab, design variables of the stiffening ribs: 
thicknesses, a~, ... ,a~, and heights of horizontal stiffening ribs, a~, a§, aIo, were 
also varied. Depending on the heights of horizontal ribs, design variables of 
vertical ribs are determined automatically. 

In our example, the finite element model contained 305 nodes and 340 ele­
ments, see Fig. 3-4. For 257 design-variable vector of the bumper, six consistent 
and feasible design-variable vectors of the rear panel have been found that satisfy 
all the aforementioned criteria constraints on <I>~, v=2, 10, see Table 3-2. It 
turned out that for these design-variable vectors (just as for the prototype) 
<l>I=2.72 kg. As has been mentioned, this structure of the rear panel contains 
six stiffening ribs, three vertical and three horizontal. The ribs pass through 
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Figure 3-4 Finite element model of the optimal solution of the rear panel. 

corresponding nodal points shown in Figure 3-4. The stiffening ribs are drawn 
by thick lines in the figure. The prototype contains no ribs. 

The values ofresidual defonnations at the nodal points 2, ... ,10 are presented 
in corresponding columns of Table 3-2. These values (4)~, ... ,4>10) are presented 
for six consistent solutions. 

The search for consistent design-variable vectors of the rear panel has also 
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Table 3-2 

<I>~ <I>~ <I>~ <1>5 <I>~ <I>~ <I>~ <I>~ <l>Io 
(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 

67 0.22 0.17 0.46 0.39 0.59 0.85 0.43 0.14 0.14 
90 0.27 0.21 0.40 0.28 0.37 0.49 0.47 0.14 0.11 
98 0.23 0.19 0.44 0.33 0.48 0.66 0.44 0.15 0.12 

125 0.23 0.31 0.45 0.37 0.59 0.94 0.50 0.13 0.14 
148 0.24 0.19 0.42 0.32 0.45 0.61 0.39 0.14 0.12 
181 0.24 0.22 0.39 0.29 0.35 0.43 0.47 0.15 0.11 

been conducted for the three design-variable vectors of the bumper, 126, 254, 
and 494. 

Aggregation of subsystems: Search for the optimal solution 

In the aggregation procedure, design variables of each of the feasible design­
variable vectors of the bumper are united (concatenated) with design variables 
of each of the corresponding consistent design-variable vectors of the rear panel. 
For instance, to the design-variable vector of the bumper 257, design variables 
of each of the six consistent design-variable vectors of rear panel have been 
added. As a result, the vectors (<<257, «67), (<<257, «90), (<<257, «98), (<<257, «125), 
(<<257, «148), and (<<257, «181) have been formed, and we have obtained six 
design-variable vectors of the whole system. An analogous procedure has also 
been performed with design-variable vectors of bumper 126, 254, and 494. As 
a result, 15 design-variable vectors of the whole system have been generated. 
The number of feasible solutions satisfying the criterion constraint on the total 
mass of the structure was nine, six of the solutions were just given. For all the 
feasible solutions, we have calculated criteria cl>v, v= 1,10 related to the whole 
system. 

The installation of additional stiffening ribs leads to the reduction of residual 
deformations, their values not exceeding 1 mm. 

After all the investigations, we preferred the structure using design-variable 
vector of bumper 257 and design-variable vector of rear panel 181. Characteristic 
of this structure is more uniform distribution of residual deformations (as com­
pared with other versions) and an acceptable mass. 

Conclusion 

The proposed approach allows a designer to generate recommendations concern­
ing the choice of design variables of the bumper and rear panel of a car, and 
also to reduce the time of operational development of the car structure. It should 
be added that the mass production of cars is in question. Therefore, the effect 
of the optimization is evident here. 
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Multicriteria Identification 
of Mathematical Models and Problems 
of Operational Development 

Identification of parameters and structures of mathematical models is fairly 
well reflected in the literature (see, e.g., Red'ko, et al. (1985); and Ljung (1987). 
Multicriteria methods allow us to treat this important problem in a different way. 
Multicriteria identification is a new direction that is of great value in applications. 

4-1. Problems of Multicriteria Identification and Their Features 

So many times we were impressed by the results of optimization: The first 
criterion is improved twice as much, the second one, by 80%, etc. However, 
such advances always cause doubts. How trustworthy are those figures? How 
adequate is the mathematical model? Without having answered these questions, 
it is hardly possible to assert that the optimization is of some practical sense. 
To construct the model of a complex system so that all performance criteria 
(there may be many dozens of them) were determined with acceptable accuracy 
is unusual. As a rule, in practice some of the criteria are calculated with compara­
tively high accuracy, while others are determined with considerable errors. 

This is the most typical situation when investigating complex mathematical 
models. Therefore, it is very important to have complete information about the 
mathematical model. In other words, we must be sure that our model is adequate 
for the system under study. The adequacy can be established by using different 
identification methods. 

In the most common usage, the term identification means the construction of 
the mathematical model of a system and determining the parameters of the 
model by using the information about the system response to known external 
disturbances. In a sense, identification problems are inverse with respect to 
optimization problems. 

By their nature, applied identification problems are multicriteria. However, 

89 
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as a rule, these problems have been treated as single-criterion problems (Red'ko 
et al. 1985; Ljung 1987). Let us briefly dwell on the most widespread identification 
methods and show the necessity of using multicriteria identification techniques. 

When constructing a mathematical model, one first defines the class and 
structure of the model operator, that is, the law according to which disturbances 
(input variables) are transformed into the system response (output processes). 
This is called the structural identification. For mechanical systems, the structural 
identification means determining the type and number of equations constituting 
the mathematical model of the system. Parametric identification is reduced to 
finding numerical values of the equation coefficients, based on the realization 
of the input and output processes. In doing this, frequency responses, transfer 
functions, and unit step functions are often used (Graupe 1976). A number of 
problems require preliminary experimental determination of basic characteristics 
of a mechanical system (e.g., the frequencies, shapes, and decrements of natural 
oscillations). The structural identification is necessary if there is no preliminary 
information about the system structure or this information is not sufficient for 
compiling equations. In the general case, the structural identification problem is 
very difficult to solve. Apparently, this accounts for the absence of general 
methods for solving this problem. 

The construction of a good (adequate) mathematical model of a complex 
system is a rare and great success for a researcher. Mostly, one has to represent 
the examined system as a set of mathematical models. For example, the planar 
rigid-body model of a truck (considered in Section 4-5) describes fairly well the 
behavior of the truck at low frequencies, whereas for high frequencies we have 
to use a three-dimensional nonlinear model. 

Parametric identification (provided the structure of the mathematical model is 
known) is usually reduced to the minimization of a functional ll 

1=I[E(a)], 

where a=(uJ, ... ,ur ) is a vector of variables (parameters) to be estimated; and 
E(a) is a generalized error or the difference between the measured output pro­
cesses of the system and respective responses of the mathematical model. 

Let the system be linear and governed by 

Mg(t) + Bg(t)+Cg(t)=x(t), 

where M, B, and C are nXn-matrices of inertia, damping, and stiffness coeffi­
cients, respectively; g(t) and x(t) are the vectors of generalized coordinates and 
disturbances. For this system, the generalized error is expressed by 

11 For minimization of the functional I, single-criterion methods are mostly used, including gradient 
methods, stochastic search algorithms, and their numerous modifications (Bekey 1970). 
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E(t,a) = Mg(t) + Bg(t)+Cg (t)-x(t), 

where C) means the presence of errors in experimental data. 
The most important stage of solving the identification problem is the choice 

of the criterion of agreement between the mathematical model and the real system, 
that is, the functional I. In publications, one can find several types of this criterion 
(Red'ko et al. 1985; Tsypkin 1982), the most frequently used being: 

• The minimum of the mean square of the generalized error or difference 
between the responses of the model and system, 

• The minimum of the weighted mean square of E (Markov's estimate), 

• The maximal likelihood, 

• The minimum of the average risk. 

When determining the desired variables from the minimality of the generalized 
error mean square, the functional 1 has the form 

1 T 
l(a)=1' f E'(t, a)E(t,a) dt 

o 

and, as a rule, is quadratic with respect to a (here, the prime denotes the 
transposition operation). Therefore, the determination of the extremum of the 
functional 1 is reduced to solving the following system of algebraic equations 

ra=d 

This system is obtained by equating to zero partial derivatives of I(a) with 
respect to the components of the vector a, that is, iJI(a)liJaj=O,j=l,r. Here, 
r is an rxr-matrix, and d is the right-hand side vector. Very often, the solution 
of these problems reduces to the investigation of nonsingularity conditions for 
the matrix r. For more complete information about other criteria, one can see, 
for example, (Tsypkin 1982). 

Experimental data are known to be always determined with some errors. The 
nature of these errors determines the choice of a criterion (i.e., the functional 
I) for establishing the correspondence between the mathematical model and the 
real system. Therefore, it is very important to study the nature of the measurement 
errors, to analyze their influence on the results of identification, and to elaborate 
recommendations for obtaining the solution with prescribed accuracy. 

In theory, identification methods for mathematical models of linear systems 
are the most developed. Red'ko et al. (1985) describe the identification methods 
using special signals (steplike, impulse, sinusoidal, etc.) applied to the system. 
These methods can serve for identification of steady-state processes with a single 
input or many inputs, provided only one of them is engaged at a time. 
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The aforementioned methods are based on the Fourier transformation. Note 
that the frequency method of identification of linear systems is based on works 
by Nyquist (1932) and Bode (1945) and uses amplitude-frequency characteristics 
(i.e. the dependence of amplitudes of the system oscillations upon the disturbance 
frequency). The frequency method implies that a sinusoidal signal whose fre­
quency changes within a prescribed range is applied to the system input. This 
method uses the Laplace transformation for input-to-output ratio. 

Some methods for the identification of mathematical models of linear systems 
are presented, for example, in Bode (1945); and Strobel (1968). According to 
these methods, the functional evaluating the discrepancy between the experimen­
tal and computed transfer functions is given by 

Here, e(iw) is the generalized error, due to errors in determining the input data 
and the discrepancy between the structures of the system and its model; 

i= -j:::r; N is the number of the exciting force frequency values at which the 
experimental measurements be carried out; O(w»O is the weighting function 
allowing for relative significance of the input data. 

The apparent simplicity of formulas similar to those given here hides a compli­
cated problem of determining the weighting coefficients. The weighting functions 
(coefficients) are used here in order to avoid the multicriteria consideration. We 
have already mentioned in Chapter 1 that such an approach is not effective. In 
some cases, more complex criteria are used as well. Note that the approach in 
question allows us not only to identify the variables of a linear system but also 
to determine its number of degrees of freedom (Red'ko et al. 1971; Woodside 
1971). 

One of the basic drawbacks of many identification methods for linear systems 
is the fact that these methods reduce to solving high-order systems of linear 
algebraic equations. The matrices of coefficients in such systems may appear to be 
ill-conditioned, and that leads to unstable solutions. The solution errors increase to 
unacceptable amounts, as the system order increases. In a number of cases, the 
way out consists in the application of so-called modal methods that do not require 
the solution of high-order systems with ill-conditioned matrices (Tsypkin 1982). 

The identification techniques have also been developed for some classes of 
nonlinear systems such as chain systems, (Sprague and Kohr 1969; Tumanov et 
al. 1981). However, the general issues of identification of nonlinear systems 
have been studied poorly. One of the essential reasons for this lies in the impossi­
bility (or great complexity) of constructing the functional I evaluating the ade­
quacy of the model to a real system. 

Thus, we can draw the following conclusion. The available identification 
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methods are reliable enough in cases where the model structure is established 
exactly and one can construct the functional I. This is mostly related to linear 
systems (however, these systems are also associated with certain complications 
we have already mentioned). In case it is impossible to establish the model 
structure exactly or to construct the functional I, the identification methods are 
mostly ineffective, that takes place for the majority of nonlinear systems. 

In this connection, a new approach is proposed in Genkin et a1. (1987). In 
all basic units of the structure under study, we experimentally measure the values 
of characteristic quantities being of our interest (e.g., displacements, velocities, 
accelerations, etc.). Parallel with this, we calculate the corresponding quantities 
by using the mathematical model. As a result, particular adequacy (proximity) 
criteria are formed as functions of the difference between the experimental and 
computational data. Thus we arrive at a multicriteria problem. Its solution allows 
us to avoid the difficulties mentioned before. The multicriteria consideration 
makes it possible to extend essentially the application area of the identification 
theory. 

Let us discuss some basic features of multicriteria (or vector) identification 
problems. 

1. In the majority of conventional problems, the system is tacitly assumed 
to be in full agreement with its mathematical model. However, for 
complex engineering systems (e.g., machines), generally, we cannot 
assert a sufficient correspondence between the model and the object. 
This does not permit us to use a single criterion to evaluate the adequacy. 
In multicriteria identification problems, there is no necessity in artificially 
introducing a single criterion to the detriment of the physical essence of 
the problem. 

2. Unlike conventional identification approaches, the adequacy of the math­
ematical model is evaluated by using a number of particular criteria of 
proximity, as already mentioned. For example, when identifying the 
parameters of the dynamic model of an automobile, it is necessary to 
take into account such important indexes (particular criteria) as vibration 
accelerations at all characteristic points of the driver's seat, driver's cab, 
frame, and engine; vertical dynamical reactions at contact areas between 
the wheels and the road; relative (with respect to the frame) displacements 
of the cab supports, springs, engine, etc (Perminov and Statnikov 1987). 
Such a multicriteria approach is very important for determining to what 
extent the mathematical model corresponds to the physical system. For 
complex systems, the number of particular proximity criteria used for 
the evaluation of the mathematical model adequacy can achieve many 
dozens (see Section 4-5). 

3. Very often, when solving the problems of the class in question, the 
designer has no information about the limits a/ and 0./* (see (1-1)) for 
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many of the variables to be identified. The improper specification of 
these limits can lead to a huge number of calculations, and nevertheless, 
the results of the identification will be unsatisfactory or incomplete. 

Fig. 4-1 shows the initial parallelepiped nl where the search for the 
variables to be identified has been started. Then the search continues in 
the parallelepiped n2 constructed after the correction of the boundaries 
of n 1• The process goes on in a similar way, until the parallelepiped 
nk is found containing the set of feasible solutions Do. (Do. C nk). If f9r 
some parallelepiped n, the relation nk rt n is valid, then Do. rt n. 
Note that the parallelepipeds n1 , n2 , ... can contain some feasible vectors 
a i E Do.. To find nk it is necessary to use the recommendations given 
in Sections 1-3 and 1-4. 

4. In structural identification, when investigating different mathematical 
models of the system, the number and limits of the variables to be 
identified, as well as the number of proximity criteria, can essentially 
change. In this connection, the problem arises on how to make the 
identification results for different structure agree. 

4-2. Parameter Space Investigation Method in Problems of 
Multicriteria Identification 

Denote by <I>~(a), v= T,k, the indexes (criteria) resulting from the analysis of 
the mathematical model that describes a physical system, a=(O:t. ... ,O:r) being 

r­
I 
I ---1-' 
I I I 
I I 
L-I---- J 

I 
1 1 L ______ .J 

Figure 4-1 The search for domains of variables in multicriteria identification problems. 
Determination of the feasible solutions set for operational development. 



www.manaraa.com

Multicriteria Identification of Mathematical Models / 95 

the vector of parameters of the model. The criteria <I>~(a) can be functionals of 
integral curves of differential equations or functions of a that are not associated 
with solutions of differential equations. 

Let <I>:;P be the experimental value of the vth criterion measured directly on 
the prototype. (The experiment is assumed to be sufficiently accurate and com­
plete. By completeness we mean that criteria <I>:;P are measured in all basic 
units, at most characteristic points of the structure. The amount of measurement 
data must be sufficient for correct formulation of the identification problem). 

Suppose there exists a mathematical model or a hierarchical set of models 
describing the system behavior. Let cIl=(II<I>~-<I>fPlI, ... ,II<I>~-<I>ZXPII), 
where 11·11 is a particular adequacy (closeness, proximity) criterion. This crite­
rion, as has already been mentioned, is a function of the difference (error) 
<I>~-<I>:;p. Very often it is given by (<I>~_<I>:;p)2 or I<I>~-<I>:;PI. In the cases 
where the experimental values <I>:;P, v= l,k, are measured with considerable 
error, they can be regarded as a random quantity. If this random quantity is 
normally distributed, the corresponding adequacy criterion is expressed by 

M{ II <I>~ -<I>:;P II }, where M{ II·II} denotes the mathematical expectation of the 
random quantity 11·11, see (Red'ko et al. 1985; Raybman 1970). In cases of 
other distribution functions, more complicated methods of estimation are used, 
for example, the maximal likelihood method. 

We formulate the following problem: by comparing the experimental and 
calculation data, determine to what extent the model corresponds to the physical 
system and find the parameters of the model. In other words, it is necessary to 
find variable vectors a i satisfying conditions (1-1) and (1-2) and, besides, the 
inequalities 

(4-1) 

Conditions (1-1), (1-2), and (4-1) define the feasible solutions set Da. (Genkin 
et al. 1987). Here, <I>~* are criteria constraints that are determined in the dialogue 
between the researcher and a computer. To a considerable extent, these constraints 
depend on the accuracy of the experiment and the physical sense of the criteria 
<l>v. 

The Search for the Identified Solutions 

The formulation and solution of the identification problem are based on the 
parameter space investigation method. In accordance with the algorithm given 
in Section 1-3, we specify the values <I>~* and find vectors meeting conditions 
(1-1), (1-2), and (4-1). The vectors a i belonging to the feasible solutions setDa. 
will be called adequate vectors. 

The restoration of parameters of a concrete model on the basis of (1-1), 
(1-2), and (4-1) is the main purpose and essence of multicriteria parametric 



www.manaraa.com

96 / Multicriteria Optimization and Engineering 

identification. Having performed this procedure for all structure (mathematical 
models), we carry out multicriteria structural identification as well. 

The vectors aid that belong to the set of adequate vectors and have been 
chosen, by using a special decision-making rule, will be called identified vectors. 

The role of the decision-making rule is often played by nonformal analysis of 
the set of adequate vectors. If this analysis separates several equally acceptable 
vectors aid, the solution of the identification problem is nonunique. 

The identified vectors aid form the identification domain Did= Uaid. Some­
i 

times by carrying out additional physical experiments, revising constraints ct>~*, 
etc. one can reduce the domain Did and even achieve that this domain contains only 
one vector. Unfortunately, this is far from being usual. Nonunique restoration of 
variables is a recompense for the discrepancy between the physical object and 
its mathematical model, incompleteness of physical experiments, etc. 

If a mathematical model is sufficiently good (i.e. it rightly describes the 
behavior of the physical system), then multicriteria parametric identification leads 
to nonempty set Da. The most important factors that can lead to empty Da are 
the imperfection of the mathematical model and lack of information about the 
domain in which the desired solutions should be searched for. 

The search for the set Da is very important, even in case the results are not 
promising. It enables the researcher to judge the mathematical model objectively 
(not only intuitively), to analyze its advantages and drawbacks on the basis of 
all proximity criteria, and to correct the problem formulation. 

Thus, multicriteria identification includes the determination and nonformal 
analysis of the feasible solutions set Da regarding all basic proximity criteria, 
as well as finding identified solutions aid belonging to this set. 

Often multicriteria identification is the only way to evaluate the quality of the 
mathematical model and, hence, to optimize this model. 

This algorithm is successfully used in practice. In Sections 4-3 and 4-5, we 
discuss some important problems solved by using this algorithm. 

By analogy to the optimization problem, we can formulate and solve the 
problem of constructing the adequate solutions set with prescribed accuracy. 

The Search for Identified Solutions with a Prescribed Accuracy 

Let Ev (v = I ,k) characterize the desired accuracy of the correspondence between 
the physical system and its mathematical model with respect to the criterion 
ct>~ (i.e., the inequality 11ct>~-ct>~xPII<Ev must hold). Then the values of all 
criteria restoring the experimental characteristics with a prescribed accuracy can 
be found through the approximation of the adequacy criteria range. 

In multicriteria identification, we are interested not only in values of adequacy 
criteria, but also in values of variables. For example, let a and fl be vectors 
giving "good" values to adequacy criteria, <P(a)=<P(fl) while the vectors a and 
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P being considerably different. In this case, if there is no additional infonnation 
for making the choice between the vectors a and p, we can regard <I»(a) and 
<I»(P) as being equally adequate to the physical experiment. However, the re­
searcher must keep in mind all vectors corresponding to good values of adequacy 
criteria. This is explained by the following considerations. In practice it is usually 
impossible to fonnalize all requirements imposed on the physical or engineering 
system. If we take into account only one of two vectors corresponding to 
approximately the same values of adequacy criteria, we can possibly lose the 
better vector with respect to nonfonnalized criteria. Suppose we have succeeded 
in meeting all demands of the system. In this case, we should consider all 
the aforementioned vectors when working with the mathematical model after 
having completed the identification. Suppose we are to optimize the parameters 
of the model with respect to some criteria. If we have eliminated one of 
two equally adequate vectors, the dropped vector can tum out to be preferred 
with regard to the perfonnance criteria. Taking into account these considera­
tions, we can modify the definition of the solution of the multicriteria 
identification problem. 

Denote by VE(<I>(P)) an E-neighborhood of the Pareto optimal set <I>(P) in the 
space of adequacy criteria. It is reasonable to define the solution of the multicrite­
ria identification problem as a set WE of all variable vectors a belonging to the 
feasible solutions set Da and satisfying the inclusion <I»(a)EVE(<I>(P)). 

As a result of nonfonnal analysis of the set WE' the researcher can choose the 
most preferred models. 

Let us show how one can solve the problem by using the parameter space 
investigation method. 

The solution algorithm is based not only on the approximation of the criteria 
space, but also on the approximation of the variable space. Let <l>k+ia)=Uj and 
8k+j be the admissible error for the variable Uj, where k is the number of adequacy 
criteria. By using the algorithm of Chapter 2, let us construct the approximation 

of the set Da to the accuracy o={8k+), j=t:r. and the approximation of its 

image, <I>(Da), to the accuracy E={Ev}, v=l,k. The fact that we have declared 
the variables Uj as criteria <l>k+j' enables us to approximate <I>(Da) and Da 
simultaneously. In this case, the set VE(<I>(P)) can be approximated to the accuracy 
E, and any vector of D a can be detennined to the accuracy o. Using the approxima­
tions of Da and <I>(Da) we can find the set WE' and thus obtain the solution of 
the multicriteria identification problem. 

Let us call the set WE the set of E-adequate vectors. The vectors aid that belong 
to the set of E-adequate vectors and are detennined with the help of a decision­
making rule will be called identified vectors. The set Did of all identified vectors 
is called the identification set. 

Thus, the described method makes it possible to find solutions of the multicrite­
ria identification problem with any prescribed accuracy. Also, this method is 
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universal and can be applied to linear and nonlinear systems, both with distributed 
and lumped parameters. However, the computer implementation of this algorithm 
can be time-consuming. 

Let us draw some conclusions. The formulation and solution of the multicriteria 
identification problem combined with nonformal analysis of the obtained results 
make it possible to: 

1. Determine the sets of adequate and identified solutions and thus judge 
about the agreement between the physical system and its mathematical 
model 

2. Assess relative merits of models (in case there is a hierarchical set of 
models), decide about the expedience of complication of the model, and 
establish the accuracy, completeness, and reliability of the obtained 
results. 

3. Correctly specify the limits of the variables range and justify the list of 
performance criteria (performance indexes) for subsequent multicriteria 
optimization having established the adequacy of the mathematical object 
to the physical system (e.g., in the course of operational development 
of a machine). 

4·3. Example 1: Multicriteria Identification of the Parameters of a Siotter 

The methodology of multicriteria identification will be considered in the example 
of a slotter whose thrust is 30 kN. Slotters are widely used for machining irregular­
shaped internal surfaces. Figure 4-2 shows a slotter consisting of column I and 
bed II joined by the bolted joint A. Slotting ram III is mounted on the column. 
It holds a slotting cutter and reciprocates in the vertical plane. On the bed, table 
IV is mounted and a workpiece is clamped on it. Machining is implemented by 
reciprocating the slotting cutter with respect to the workpiece. 

Unfortunately, slotters are prone to intense vibration within the most important 
range of cutting speeds from 6 m1min to 12 m1min. The vibrations during the 
cutting process limit the productivity ofthe machine, reduce its reliability, shorten 
the service life, and deteriorate both the accuracy and the quality of the processed 
surfaces. 

Experimental Study of Vibration Stability of the 
Slotter's Hydromechanical Systems 

The system's response to dynamic disturbances was measured by transducers 
mounted at eight points located on different levels over the bed guideways 
(Fig. 4-2). This allowed for measuring vibration amplitudes as functions of the 
disturbing-force frequency. 
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Figure 4-2 The layout of transducers on the machine tool. The "opening" of joint A. 

The study of the dynamic stiffness of the mechanical system and the modes 
of vibration of the machine tool has shown that the stiffness of the joint between 
the column and the bed was insufficient. Excited by a periodic disturbing force, 
the column starts vibrating, and the amplitudes of vibration of individual points 
vary linearly depending on their vertical position. The experiments have shown 
that the maximum-amplitude resonance vibration takes place at the natural fre­
quency 15.9 Hz and causes "opening" of the joint, upon which the column and 
the bed start displacing with respect to each other (Fig. 4-2). 

Construction of a Dynamic Model of the Machine Tool 

The analysis of experimental results shows that the most reliable data have been 
obtained for the horizontal-torsional and vertical modes of vibration. The former 
is more intense: it causes "opening" of the joint A between the column and the 
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bed, large amplitudes of the slotting tool vibration with respect to a workpiece, 
and deterioration of the surface finish. 

Since the two basic modes of vibration correspond to the frontal plane of the 
machine tool (which passes through the symmetry axes of the column and the 
bed), it was decided to solve the problem of identification using the plane model 
shown in Figure 4-3. The model comprises a column and a bed, a table, a ram, 
a slotting tool, joints between the table and the bed and between the machine's 
supports and the foundation, the joint between the column and the bed, the joint 
between the ram and the column guideways, fastening units of the hydraulic 
cylinder, and ram slide. 

Parameters of the dynamic model include the masses and the moments of 
inertia, the coordinates of fastening units of vibroisolating and elastoinertial 
elements, the angles of rotation oflocal coordinate systems, stiffness characteris­
tics, the damping factors of structural elements, and mechanical characteristics 
of elastoinertial elements. 

Figure 4-3 Dynamic model of the machine tool. 
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The Horizontal, Vertical, and Torsional StitTnesses of the Column and 
the Bed Supports on the Foundation (Links 1-8 and 6-7 in Fig. 4-3). 

During the slotter operation the concrete foundation is subjected to periodic 
loads and is gradually destroyed. The support stiffnesses are responsible, to a 
considerable extent, for the main drawback of the machine tool, the "opening" 
of the joint between the column and bed. Since the stiffness coefficients of the 
supports may hardly be accurately determined experimentally or specified a priori 
by some alternative means, they were included in the list of the model parameters 
to be identified. 

The Horizontal, Vertical, and Torsional StitTnesses of the Joint Between 
the Column and the Bed (Link 1-6 in Fig. 4-3). 

The column and the bed of the machine tool under consideration are connected 
with bolts distributed over the surface of the joint. Since the ram mass and its 
distance from the joint are large, slotting is accompanied by the appearance of 
a large bending moment that loosens the bolted joints in a nonuniform manner. 
Due to this, it is rather difficult to measure the joint stiffnesses precisely. 

It was decided to identify the following nine variables determining the modes 
of the machine tool vibration: a=(c~-8, c~-8,p;-8, c~-6, c1-6,p;-6, c~-7, c~-7,p~-7) 
where cy, c" and Px are the horizontal, vertical, and torsional stiffnesses respec­
tively, and 1-8, 6-7, and 1-6 are the superscripts of the links. 

Adequacy criteria 

The mathematical model of the machine tool is used for the determination of 
the set of criteria characterizing the most vibroactive modes of oscillations in 
the low-frequency range, because the full-scale test data are sufficiently complete 
for this range only. Therefore, the adequacy criteria characterize the degree of 
correspondence of the model to the real object mainly within the given range. 
Table 4-1 presents experimental characteristics <I>~xp defining the list of the 
adequacy criteria. The latter were calculated using the formula 

Functional constraints 

In solving the problem of identification of the dynamic model parameters, a 
list of eight constraints taking into account the accuracy of manufacture and 
assemblage of the machine tool units as well as the accuracy of mounting the 
machine tool on the supports, has been generated. 

Thus, a full-scale experiment has been conducted, and the mathematical model, 
proximity criteria, and functional and variable constraints were generated. Solu­
tion of the identification problem, and subsequently, the optimization problem, 
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<I>iXP 

<I>2xP 

<I>~xp 

<I>rp 

<I>~xp 

<I>(jxp 

Table 4-1 

Physical meaning 

Basic frequency of natural oscillations, Hz 

The second natural frequency, Hz 

Coefficient of the oscillation shape in node 3, relative units 

Coefficient of the oscillation shape in node 5, relative units 

Coefficient of the oscillation shape in node 6, relative units 

Vibratory compliance value in the cutting zone at the first 
resonance frequency, mrnIN 

Static displacement value in node 3, mm, under cutting force 
of 1 kN 

Static displacements in the cutting zone, mm, under cutting 
force of 1 kN 

Experimental 
value 

16 

30 

0.738 

0.934 

0.283 

3.2,10-4 

0.492,10-2 

0.288'10-2 

was aimed at improving the basic characteristics of the machine tool, namely 
its reliability, service life, machining accuracy, and vibration stability. 

Solution of the problem of multicriteria identification 

In the initial parallelepiped nl , N=2,048 trials were conducted, and it was found 
that Da=0. A similar result has been obtained by analyzing new parallelepipeds 
n2 and n3 obtained by correcting the nl boundaries (see Fig. 4-1). 

Upon analyzing the test tables and histograms of corrected variables it was 
decided to change the variation boundaries again, changing at the same time the 
number of variables. This led to parallelepiped n4. Variables ala-al3 described 
later, have a substantial effect on the character of vibration in the low-frequency 
range; these variables cannot be accurately measured in an experiment. Here a 10 

is the stiffness of the screw of the table feed drive (modeled by the horizontal 
stiffness of the joint between the table and the bed, link 1-2); a II is the torsional 
stiffness of the ram guideways on the column (link 3-4); and al2 and al3 are 
the corrections for taking into account shear deformations in the column (link 
5-6). 

These variables permitted taking into account the possible effect of the column 
vibrational compliance on the nature of vibroactive modes of oscillations. 

Thus, the subsequent search was carried out within a 13-dimensional variable 
space. 

Let us analyze the results obtained in parallelepiped n4. The calculations 
yielded acceptable values of discrepancies in all the static and dynamic criteria, 
except for <1>6' The latter criterion is the only one depending on both dissipation 
and stiffness parameters of the model. All the criteria pertaining to free vibration 
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of the machine tool mechanical system and its static rigidity, are fully defined 
by its stiffness and inertia variables. Therefore, large initial discrepancies in 
criterion <1>6 against the background of satisfactory results for the majority of 
the rest criteria, invited doubt in the correctness of the damping coefficients 
specification. 

In line with what was said before we have analyzed and corrected the damping 
coefficients of the table and the ram guideways, the column and bed supports, 
and elastoinertial elements of the fixed joint between the column and the bed. 

Correctness of this decision was confirmed by obtaining satisfactory values 
of discrepancies in criterion <1>6 in subsequent calculations in parallelepiped n5. 

From the viewpoint of further correction of the parallelepiped n4 boundaries, 
of special importance is analysis of the correlation matrix constructed using the 
results of trials implemented in n4. The analysis of the coefficients of pair 
correlation between criteria and variables has revealed a strong influence of the 
stiffness of the joint between the column and the bed on criteria <1>4 and <1>7. 
This was conclusively confirmed by the results of a full-scale experiment that 
has shown that the low vibration stability of the machine tool under consideration 
is caused by the "opening" of the joint between the column and the bed. Also 
analyzed were the dependences of closeness criteria on variables (see Chapter 
5). A strong dependence of the criterion of vibration compliance within the 
cutting zone on the stiffness of the joint has been demonstrated. Also, the 
experimental study has shown that the total vibration displacements of the tool 
and the workpiece are mostly determined by the column vibration. The effect 
of horizontal stiffness of the bed support on displacements at node 6 is obviously 
caused by the specific features of the machine tool design. 

Thus, this analysis has allowed determination of the boundaries of the new 
parallelepiped n5. 

Search in Parallelepiped IT5: Analysis of the Results 

Upon introducing the improved values of the damping factors, the discrepancies 
in the vibration displacement amplitude in the cutting zone, criterion <1>6, proved 
to make up to 8%. The character of the modes of vibration remained the same. 
In order to construct the feasible solutions set of adequate models, eight designer­
computer dialogues were conducted. The interactive mode was used for determin­
ing the feasible solutions set of models vi depending on the values of criteria 
constraints <l>t*, v=I, ... ,8. Next, the set was subjected to nonformal analysis. 

Models «59 and «395 should be considered the best ones, because (see Table 
4-2): 

1. The discrepancies in the frequency criteria are quite acceptable. 

2. The discrepancies in criterion <1>8 correspond to the accuracy of the 
experiment (taking into account displacements of a statically loaded 
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Table 4-2 

Adequacy criteria values, % 

Models <1>1 <1>2 <1>3 <1>4 <1>5 <1>6 <1>7 <1>8 

a 59 3.9 18.6 4.19 8.2 35.6 4.95 6.72 2.08 
a 395 2.56 16.5 5.1 8.32 31.7 5.72 5.8 0.48 
a l85 3.51 14.1 4.35 8.16 36.1 4.54 5.38 1.61 

cutter and a workpiece in the cutting zone, which were measured in the 
experiment with the greatest accuracy). 

3. The discrepancies in the criteria 4>3, 4>6, and 4>7 are approximately 
equal (especially so for model ( 395), since the three criteria characterize 
vibration in the cutting zone. 

The variables of a set of adequate models have been analyzed, and it was 
found out that for the best solutions the tendency to large values of horizontal 
stiffness of the table-bed joint persists. 

These studies have allowed formation of parallelepiped n6 within which five 
adequate vectors were determined. Model a I85 characterized by comparatively 
small discrepancies in the basic closeness criteria, proved to be most preferred 
(see Table 4-2). 

This model was preferred for the following reasons: 

1. The variables of the model take into account the low torsional stiffness of 
the column, characteristic of the present machine tool design, correctly. 

2. The model correctly takes into account the high compliance of the longitu­
dinal feed drive and the contacting surfaces of the table (the compliance 
leads to large vibrational displacements in the cutting zone). 

3. All the closeness criteria, taking into account the oscillatory nature of 
slotting, are characterized by the values of 4>3, 4>6, and 4>7 being approxi­
mately equal (see Table 4-2). This means that alongside with a good 
agreement of the criteria subjected to analysis, the general character of 
vibration in the zone is also reproduced correctly. 

Stability of this solution with respect to the variable changes was analyzed in 
the vicinity of model a I85 . The analysis has shown that the model is stable. (A 
parallelepiped centered at a I85 was constructed in accordance with the variables 
tolerances, and N=256 trials were conducted. This is quite sufficient for the 
parallelepiped of such a small volume. All the models proved to be feasible, 
and the values of the criteria changed insignificantly.) 

In order to determine the domain of admissible variations of design variables 
(see Section 4-4), the variables of adequate models were analyzed in parallelepi-
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peds n5 and n6 , and a parallelepiped for solving the problem of optimization 
was constructed on Du. 

Let us draw some conclusions. 

1. The problem of multicriteria identification of the parameters (variables) 
of a slotter whose thrust is 30 kN was formulated and solved using eight 
adequacy criteria that take into account the oscillation frequencies and 
shapes, vibrational displacement in the cutting zone, and static character­
istics. 

In solving the problem, 13 stiffness variables of the machine tool's 
joints and connections were identified. 

2. The boundaries of the variables were found. Although prior to solving 
the problem the boundaries were rather indefinite, the five-fold correction 
has allowed finding such values of the boundaries, which ensure solution 
of the problem of multicriteria identification. 

3. The set of adequate models was found. 

4. Taking into account all the adequacy criteria, model «185 was identified, 
characterized by low stiffness of the joint between the column and the 
bed (this determines the loss of vibration stability of the machine tool 
in the low-frequency range), and by the predominant effect ofthe column 
vibration on the vibrational displacements of the tool with respect to the 
workpiece. 

In designers' opinions, this model adequately describes the character 
of vibration in the cutting zone and agrees well with experimental results. 

5. The solution of the problem of multicriteria identification has allowed 
objective estimation of the mathematical model of the slotter. In tum, 
this permitted correct formulation and solution of the problem of improv­
ing the machine tool operation as concerns the criteria associated with 
stability, machining accuracy, the hydraulic drive, ram, and slotting tool 
service lives, the consumption of metal, and reduced costs. The ways 
of improving the machine tool design are indicated. 

4·4. Operational Development of Prototypes 

In this section, we will discuss the problems of perfecting engineering systems 
(machines). Mainly, these problems are related to the operational development 
of a prototype of a machine designed for serial and mass production. First, the 
machine is tested. the structure of the test is determined by the type of machine 
(an airplane, car, ship, machine tool, etc.). For example, cars are subjected to 
laboratory (bench) tests, including strength, fatigue, and vibration investigations 
of both individual units and the car as a whole. 
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Great attention is paid to road tests. These are mostly carried out on proving 
grounds where the car is tested on proper! y profiled road sections, in different condi­
tions depending on the carried load and velocity of the car. Apart from this, cars 
are tested on regular roads under conditions close to operational ones. Thus, cars 
are subjected to bench and road tests. These tests are aimed at the detection of 
imperfections with subsequent operational development of the prototype so as to 
satisfy the customer's demands. The operational development is aimed at increasing 
the durability and reliability, reducing vibrations and noise, etc. 

It is of essential importance to make the process of operational development 
as short as possible. Perhaps this is the main problem faced by designers of cars 
and other machines. As a rule, the decision about termination of the operational 
development is made after a number of successive improvements of the prototype. 

We propose a new technique for the operational development of mechanical 
structures. The technique is shown in Figure 4-4. The operational development 
starts with testing the prototype. Then two options are available. In the first 
approach, based on the results of the tests only, we improve the prototype, and 
then repeat the tests. If a series of successive improvements ofthe prototype gives 
acceptable results, the decision is made to terminate the operational development. 
However, if the designer considers the results of the procedure insufficient, the 
second approach is advisable. 

This approach envisages the construction of a mathematical model of the 
system on the basis of the tests conducted. The subsequent investigation is carried 
out in two stages. In the first stage, we perform the multicriteria identification 
of parameters of the mathematical model. If, after the identification has been 

!pproach 2 

Multicriteria 

Approach 1 

Continuation of 
investigations 

identification I F--------------~~~;;;;;,;~~ of parameters I0-Il Development of 
of the model the mathematical 
(PSI method) model 

Figure 4-4 The block diagram of operational development of engineering systems. 
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completed, a significant disagreement takes place between the results of tests 
and computations, one should correct the mathematical model and repeat the 
identification procedure. This continues until the discrepancies between the exper­
imental and computational data are within tolerable limits. 

In the second stage, after the multicriteria identification, the designer formu­
lates and solves the multicriteria optimization problem. In doing this, he uses 
the mathematical model whose adequacy was established in the first stage. Based 
on the results of the optimization, the improvement of the prototype is done, 
and then the tests are reproduced. This cycle is repeated until the designer decides 
about the termination of the operational development. 

Thus, in the first stage, the set Da is found as a result of the multicriteria 
identification. In the second stage, the optimization problem is solved: we con­
struct the parallelepiped II in Da , determine the vector of performance criteria, 
and find the feasible solutions set D (see Fig. 4-1). 

We already mentioned that a weak point of optimization when used in design 
is a significant discrepancy between the mathematical model and the physical 
system, as well as improperly specified constraints. Therefore, very often the 
results of optimization were of no practical value. In our approach, we obtain 
a confirmed model and the set Da resulting from the multicriteria identification. 
This, to a sufficient extent, justifies the optimization performed at the second 
stage, and substantiates the recommendations for improving the prototype of a 
machine. In addition, this approach is expected to significantly reduce the amount 
of expensive and durable tests in the course of operational development of 
machines. 

Note that having the approximation of the set Da , we can construct the set D 
with required accuracy. First, we construct the domain of admissible variations 
of design variables, Dv=U II;. Here, the parallelepiped II; must satisfy the 

; 

following conditions: (1) The inclusions P E II; implies P E Da for any vector 
P; and (2) II; is the maximal parallelepiped satisfying condition 1. In other 
words, there is no parallelepiped in Da that contains II;. 

The boundaries of parallelepipeds II; can be constructed when having analyzed 
test tables compiled by using the results of approximation of the set D a . 

Let us make some comments as to the necessity of determining Dv. In the set 
Da we are to determine the sets where it is possible to vary the design variables 
continuously when searching for the optimal solution. It seems to be inexpedient 
to search for the optimal solution over all the parallelepiped II in the case of 
the rigid constraints, since the volume of the set Da can be considerably less 
than the volume of II. Therefore, when searching over the set Da , we increase 
the percentage of found feasible models, as compared with the search over the 
entire II. Obviously, the probability of obtaining better results also increases in 
this case. 

After having obtained Dv, we construct the feasible solutions set D(DCDv) 
as described in Section 1-3. 
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The optimization in n can fail to give desired results, for instance, if the 
volume of n is comparatively small. In this case, the designer, having analyzed 
the results of identification and determined significant design variables (see Sec­
tions 1-3 and 1-4, and Chapter 5), and also using his experience, can find it 
possible and advisable to vary some of the design variables within essentially 
wider ranges. 

Then a new parallelepiped is to be constructed in which the optimal solution 
01.0, with respect to criteria <I>}, •.. ,<I>k, is searched for according to the method of 
parameter space investigation. Usually, after having manufactured the optimal pro­
totype, it is advisable to investigate it and confirm that the design variables have been 
found correctly, and the mathematical model is adequate to the physical system. 

4-5. Example 2: Operational Development of a Vehicle 

The problem of operational development of a prototype was formulated and 
solved on the example of a truck. 

The solution was obtained in two stages. In the first stage, the mathematical 
model of the truck was identified on the basis of experimental data obtained in 
road tests (the problem of multicriteria identification). 

In the second stage, the results of solving the problem were used for developing 
the optimal recommendations for improving the vibroprotective properties of the 
suspension system (the problem of multicriteria optimization). 

Mathematical Model of a Truck 

Vibrations of a truck were studied and calculated by analyzing its simplified 
scheme. 

Both the analysis of experimental data and numerical studies of the truck 
vibration have shown that for the case under consideration it suffices to consider 
vertical and longitudinal-angular vibrations over the frequency range from 0.5 
Hz to 16 Hz, using the model shown in Figure 4-5. The latter is composed of 
concentrated masses connected by inertialess elastic and damping elements, and 
has been developed subject to the following assumptions (Khachaturov 1976): 

1. The platform, engine, frame, and cab are absolutely rigid bodies. 

2. The moments of inertia of axles with respect to the wheel rotation axes 
are zero. 

3. The inertia forces due to unbalanced rotating masses are equal to zero. 

4. The vibrations of the truck masses are small. 

5. Each tire contacts the road at a point. 

6. The center of mass of the platform stays in the longitudinal symmetry 
plane and moves in such a way that the projection of its velocity onto 
the horizontal plane remains constant. 

7. Both the elastic and damping elements have linear characteristics. 
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2 

Figure 4-5 Automobile schematic. 1 is the engine; 2 the cab; 3 the platform; 4 the 
frame; 5 and 6 the axles; (1) and (2) the front and rear engine supports; (3) and (4) the 
front and rear cab supports; (5) and (6) the front and rear platform supports; (7) and (8) 
the front and rear suspensions; and (9) and (10) the front and rear tires. 

The external excitation of the system is defined by functions q,(t) and q2(t), 
which take into account the road microprofile under the front and rear axles, 
respectively, and whose spectral density is given by the expression 

(4-2) 

where A is a coefficient characterizing the road roughness (measured in 11m); n 

is the exponent corresponding to the type of road under consideration; VI is the 
truck's velocity (mls); W, and W2 are the coefficients characterizing the power 
spectral density of excitation (lIs); i= 1, 2; and W is frequency (lIs). 

Functions q,(t) and q2(t) differ only in the time lag T due to the distance 
between the front and rear axles and are related by q2(t)=q,(t-T). The time lag 
T is given by 

B 
T=­

VI 

where B is the truck wheel base (m). 

(4-3) 

The vibrations of the structure were estimated using the power spectral densit­
ies (PSD) of accelerations at the characteristic points of the units linked to 
each other by connecting elements, the PSD of relative displacements, and the 
angles through which the bodies rotate. The spectra were determined over a 
frequency range five octaves wide, starting from 0.5 Hz with the resolution of 
1112 octave. 
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Small vertical oscillations of the center of mass of a rigid body are described 
by the following linear differential equation: 

MZ'=~F; 

where M is the body mass; and F; is the force exerted by the ith connecting 
element. 

Force F; is given by the equation 

where fl.; is the ith element deformation; fl.; is the rate of deformation of the ith 
element; C; is the equivalent stiffness of the ith element; and K; is the equivalent 
damping factor of the ith element. 

Small angular oscillations of a rigid body are described by the following linear 
differential equation: 

JU'=~M; 

where J is the moment of inertia of a body about its center of mass; M;=FiX; 
is the moment of the force exerted by the ith connecting element; and X; is the 
arm of the force. 

Thus, having written down the equations for each body, we get a full system 
of linear differential equations. Then, using the Laplace transform, we arrive at 
a system of linear algebraic equations in the transfer functions describing the 
effect of an input disturbance on the points of the system (see Fig. 4-5) where 
C; and K;, i = 1, ... , 10, are the values of equivalent stiffnesses and damping factors 
of the ith element of the truck suspension. 

Accelerations and deflections were calculated for the points of the truck (shown 
in Fig. 4-6). 

For each of the three types of road (asphalt, smooth cobblestone, and rough 
cobblestone) the equivalent stiffnesses and damping factors of elements 7 and 8 
(see Fig. 4-5) were taken from the results of dynamic bench tests. Accordingly, 
in calculating the vibrations, the nonlinear properties of springs were taken into 
account by choosing the corresponding equivalent stiffnesses and damping factors 
for different levels of excitation. This was done in line with the method of 
linearization discussed in detail in (Voevodenko and Pevzner (1985)). The method 
implies that for a given disturbance (determined by the road roughness), a leaf 
spring may be adequately simulated by a linear element with the corresponding 
values of equivalent stiffnesses and damping factors within the said frequency 
range. 
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Figure 4-6 ZI-Z6 are linear displacements; U1-U4 are rotations; eM is the frame center 
of mass; 1-12 are the positions of the road tests measurements points. 

Truck Tests 

The tests have been carried out in order to detennine the spectra of vibration 
accelerations of the structural elements of a truck subjected to a nominal loading. 
Measurements were implemented in moving over various roads at testing grounds. 

The accelerations induced by vibration at 12 points of the structure were 
measured with accelerometers and recorded using a tape recorder (Fig. 4-6). 

Note that the PSD of accelerations practically coincide for the points positioned 
symmetrically with respect to the longitudinal symmetry axis. Therefore, the 
data obtained for only one of a pair of symmetric points were used. 

The experimental data were processed using an FFf -analyzer allowing plotting 
the PSD of accelerations versus the frequency of excitation. The statistical error 
of the experiment lay within ± 15%. 

Formulation and Solution of the Problem of Multicriteria Identification of the 
Parameters of a Truck 

The mathematical model is characterized by the following variables: the masses 
and moments of inertia of units, the coordinates of the structural elements, and 
the stiffnesses and damping factors of the connecting elements. 

In carrying out laboratory tests the following variables of the truck under study 
were determined: the masses and moments of inertia of the engine, cab, platform, 
and frame, the coordinates of their supports, and the coordinates of the points 
at which the engine, cab, and platform are attached to the frame. The dynamic 
characteristics of the leaf springs, C" Cg, K" Kg, were also determined experi­
mentally. 
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Table 4-3 

Boundaries of 
Ordinal Values variables 
numbers of the 

of Deno- Dimen- prototype lower upper Optimal 
variables tation sion variables OLj OL~* 

J model 

C1 N/m 7.7'105 6.6·1<f 8.8'105 7.08'105 

2 C2 N/m 3.6.106 3.05'106 4.14'106 3.29,106 

3 C3 N/m 1.14'106 9.6·1<f 1.32.106 1.06'106 

4 C4 N/m 6.5'105 6.1.105 8.8,105 6.83,105 

5 C5 N/m 2.0'108 1.6'108 2.4.108 1.8'108 

6 C6 N/m 2.0'108 1.6.108 2.4.108 1.92'108 

7 C7 N/m 4.2.105 4.2.105 4.2'105 2.99.105 

8 C8 N/m 1.05'106 1.05.106 1.05.106 7.21'105 

9 C9 N/m 2.0'106 1.6'106 2.4'106 1.63.106 

10 CIO N/m 3.6.106 2.88'106 4.32,106 3.01'106 

11 Kl N's/m 2,000 1,200 2,800 3,400 
12 K2 N's/m 7,800 4,700 11,000 9,210 
13 K3 N's/m 5,000 4,000 6,000 4,920 
14 K4 N's/m 4,000 3,200 4,800 4,376 
15 K5 N's/m 25,000 20,000 30,000 25,700 
16 K6 N's/m 25,000 20,000 30,000 24,467 
17 K7 N's/m 14,000 14,000 14,000 14,665 
18 K8 N's/m 36,000 36,000 36,000 42,588 
19 K9 N's/m 4,000 3,200 4,800 3,908 
20 KIO N's/m 8,000 6,000 10,400 5,902 

The following variables were to be identified: (1) The stiffnesses of connecting 
elements, C I-C6, C9 , and C lO; and (2) the damping factors of the connecting 
elements, K I-K6, K9, and KlO (see Fig. 4-5). These variables could hardly be 
determined by either bench or road tests. 

The boundaries of the variables form a 16-dimensional parallelepiped III, see 
Table 4-3. 

Figure 4-7 shows the curves of the RMS spectra of accelerations: curve 1 has 
been calculated using the mathematical model, and curve 2 was obtained by road 

tests. (RMS is a square root of the PSD, G= ..Jg(j)). 
In order to estimate the closeness of the calculated and experimental curves 

one has to introduce adequacy criteria 12 . 

The degree to which curves match each other is estimated using the following 
three groups of criteria: 

12In practice, a researcher must often construct a multitude of curves by varying the parameters 
of a mathematical model, and select the curve that approximates a given one in the best possible 
way. This is a typical multicriteria problem in which the closeness of curves is estimated using 
various adequacy criteria. 
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Figure 4-7 1 is the calculated RMS spectrum of accelerations; 2 is an analogous plot 
drawn using the road tests results;flj and!2j, j = 1, 2, are the frequency range boundaries. 

1. Mismatch in the frequencies at which the local RMS maximum is observed: 

<I>;=lafimaxl, i= 1, ... ,n; 

2. The difference in the values corresponding to the local RMS maximum: 

<l>i=laGimaxl, i=n+l, ... ,2n 

where n is the number of local maxima at the RMS plot. 

3. The difference in the root-mean-square of accelerations within a given 
range: 

f 2j f 2j 

<1>;= l(f gJ(f)df)"2_(f g2(f)df) 112 I ' i=2n+ 1 , ... ,m 
IIj IIj 

where j is either 1 or 2 depending on the measurement point under 
consideration;fll=0.5 Hz;f12=i2J=6 Hz; andh2=16 Hz. 

Next, it is shown that there are 65 such criteria. Therefore, it was decided to 
ignore for the time being the values of the spectra of relative displacements and 
the angles of the structural elements rotations. The latter were taken into account 
after the construction of the feasible solutions set using the aforementioned three 
groups of criteria. 

The mathematical model was calculated for 60 frequencies fi belonging to the 
range [0.5 Hz-16 Hz]. 

Let us denote by ffitfu the frequencies at which the experimental RMS spectrum 
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of accelerations attains its local maximum, and by Gi~x the values of the maxima. 
Depending on the measurement point position, n varied from 1 to 3. 

For all 12 measurement points 65 closeness criteria were needed: The first 
group consisted of 22 criteria determining the values of frequencies (Hz), the 

second group incorporated the next 22 criteria representing RMS (m/s2 • .$z), 
finally, the third group included 21 criteria representing the RMS accelerations 
(m/s2). First, an interval [ff~ax±O.I.fi~x] Hz was chosen. Then, the local maxima 
Gjmax and the corresponding values offimax belonging to the interval were deter­
mined, and criteria $j=lff~~x-fimaxi, i=I, ... ,n, and $j=iGi:fax-Gjmaxi, 
i=n+l, ... , 2n, were calculated. 

It is known that the differences between experimental and calculated frequen­
cies corresponding to local maxima of RMS spectra of accelerations may hardly 
be compared for different frequency ranges. In this case, the estimated mismatch 
between experimental and calculated values depends on the frequency range. 

The experience of comparing experimental and calculated characteristics 
allows making the following statement. Let the difference between experimental 
and calculated frequencies bofi be measured not in Hertz but in one-twelfths of 
the octave intervals between .ff~ax and fimax. Then these values characterize the 
criteria $j irrespective of the frequency range the values belong to. 

Table 4-4 presents experimental13 values of $~XP v=I, ... ,65. In line with 
Section 4-2, $~XP is included into the expression for respective closeness criterion. 

The set of variables and the corresponding criteria vector determined by the 
designers of the truck manufacturer will be called a prototype, see Table 4-3. 
The studies were aimed at finding out how well the prototype was selected, 
whether it can be perfected in at least the basic variables, and whether there 
exist alternative solutions of interest to the designers. 

Analysis in II' 

In all, N=4,096 trials were carried out, and constraints for the first 22 criteria 
were determined. For the rest of the criteria no constraints were introduced, 
since they could not be determined with sufficient accuracy. Only seven models 
(the prototype excluded) proved to meet the aforementioned criteria constraints. 
Since the latter were not determined for all the criteria, the seven models were 
subjected to further analysis. 

For each calculated solution, the RMS spectra of acceleration plots were 
considered (12 such plots were drawn for each solution, corresponding to the 
aforementioned points of the truck). Then, these plots were compared with the 
ones obtained in the road tests. 

Figure 4-8 shows the plots obtained for point 2 (see also Fig. 4-6). The solid 
line corresponds to one of the feasible models, namely model 552, obtained by 

13The experiment was carried out for a smooth cobblestone road and the truck speed 60 krnIh. 
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Table 4-4 

Measure- Measure- Measure-
Ordinal ment ment ment 
numbers point The Ordinal point The Ordinal point The 

of number value numbers number value numbers number value 
criteria (Fig. 4-6) of <I>~XP of criteria (Fig. 4-6) of <I>~XP of criteria (Fig. 4-6) of <I>~XP 

I 2.12 23 0.712 45 2.04 
2 6.5 24 I 0.9 46 1 5.46 
3 1 9.875 25 1 0.836 47 2 1.28 
4 2 10.0 26 2 1.3 48 2 4.06 
5 3 1.75 27 3 0.546 49 3 0.69 
6 3 10.125 28 3 0.787 50 3 1.67 
7 4 1.25 29 4 0.537 51 4 0.507 
8 4 10.75 30 4 1.07 52 4 1.125 
9 5 2.125 31 5 0.771 53 5 2.07 

10 5 6.5 32 5 0.769 54 5 3.4 
11 6 9.5 33 6 0.794 55 6 0.833 
12 7 1.25 34 7 0.527 56 6 1.98 
13 7 9.75 35 7 0.937 57 7 1.01 
14 8 1.25 36 8 0.530 58 7 2.71 
15 8 4.5 37 8 0.595 59 8 0.537 
16 8 9.5 38 8 0.409 60 8 0.570 
17 9 1.75 39 9 0.433 61 9 2.5 
18 9 9.5 40 9 1.61 62 10 1.26 
19 10 1.62 41 10 0.865 63 11 2.0 
20 11 9.75 42 10 0.225 64 11 12.4 
21 11 9.87 43 11 4.05 65 12 6.85 
22 12 12.0 44 12 2.26 

solving the multicriteria identification problem. The dashed line corresponds to 
road tests. 

The characteristics of the model proved to be rather close to the road-test 
results for all the other measurement points too. 

Similar plots were drawn for the rest of the feasible solutions. No considerable 
departures of the curves from the results of road tests were revealed. This 
allowed concluding that all the seven calculated solutions have entered the feasible 
solutions set Do. in all 65 criteria. 

The correction of the boundaries of the variables was of special importance in 
solving the multicriteria identification problem. Since in problems of multicriteria 
identification one cannot define a priori constraints on the variables, the latter 
had to be corrected in order to be able to construct a parallelepiped Ilk, such 
that the feasible solutions set Do. C Ilk, and if for a parallelepiped II, Ilk rr.. II 
holds then Do. rr.. II. Figure 4-9 shows the histograms constructed for three, a3, 
alO, and all, of the 10 variables being corrected, for which the acceptable 
solutions concentrate near the ends of segments [aj, aj*]. The designers have 
altered the corresponding boundaries of the variables. The other six variables in 
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Figure 4-8 RMS spectra for the point 2 acceleration. 

0 2 were the same as in 0 1• (The construction of histograms and analysis are 
discussed in Sections 1-3 and 1-4.) 

Analysis in n2 
The same number of trials, N=4,096, were carried out in the 16-dimensional 

parallelepiped 0 2. The same constraints on the first 22 criteria were preserved. 
As a result, 11 models were obtained, for which the constraints are met. 

The models were analyzed taking the remaining criteria, <1>23-<1>65, into ac­
count. All of them have entered the feasible solutions set Dot. Hence, our assump­
tion about the presence of acceptable solutions outside nl proved to be true. 

In analogy to the seven models found earlier in 0 1, these models proved to 
be acceptable as regards the closeness criteria taking into account the values of 
the spectra of the relative displacements and rotation angles of the structural 
elements. 

In line with the design and technological requirements no further corrections 
of constraints on the variables were carried out. 

Thus, parallelepiped 0 2 proved to be the final one in the present analysis. 
Similar analyses were conducted taking into account the tests carried out on 

the other proving-ground roads. As a result, feasible solutions set Dot being the 
intersection of the feasible solutions sets corresponding to each of the three roads, 
was constructed. 

Three of the models obtained by solving the problem under consideration, 
«552 among them, have entered the set. These acceptable models were used for 
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Figure 4-9 Initial, aj(*), and new &*(*), boundaries of the corrected variables 3, 10, 
and 11. atJ}*) and &tJ}*) are the feasible solutions set boundaries in III and Il2 respectively. 

constructing parallelepiped n within which the problem of optimization was 
being solved. 

Formulation and Solution of the Optimization Problem 

Let us consider the choice of criteria and design variables. As the design variables, 
we have taken the stiffnesses and damping factors presented in Table 4-3, and 
also the stiffnesses and damping factors of the leaf springs. Together they form 
a 20-dimensional parallelepiped n. The boundaries of design variables were 
chosen by the designers who took into account both the results of solving the 
problem of the set Da determination and the technological potential of the plant. 

The criteria may be conditionally divided into the groups of: (1) Comfort; (2) 
durability; (3) load preservation; and (4) safety (see Table 4-5). 

In line with ISO 263111-1985(E)14 the comfort criterion <P\ was set equal to 

14The International Organization for Standardization, 1985. Evaluation of human exposure to 
whole-body vibration-Part 1: General requirements, pp. 1-17. 



www.manaraa.com

118 I Multicriteria Optimization and Engineering 

Table 4-5 

Performance 
Measure- criteria values 

ment Performance for the 
Ordinal point criteria optimal Meanings of 

numbers of Dimen- number values of the design (model performance 
criteria Range sion (Fig. 4-6) prototype 1,820) criteria 

W mls2 4 2.149 1.55 comfort 
2 L m 1.09'10-3 9.84'10-4 durability 
3 H m 1 3.8,10-4 2.8,10-4 durability 
4 L m 2 1.75.10-4 1.50'10-4 durability 
5 H m 2 6.01,10-4 4.8,10-4 durability 
6 L m 3 7.85,10-4 7.38'10-4 durability 
7 H m 3 6.94,10-4 6.71'10-4 durability 
8 L m 4 5.52,10-4 4.42'10-4 durability 
9 H m 4 5.33,10-4 3.57'10-4 durability 

10 W mls2 A 10.66 8.3 load preservation 
11 L m 9 1.03.10-2 1.037'10-2 durability 
12 H m 9 7.78,10-4 6.012'10-4 durability 
13 L m 10 1.02,10-2 9.065'10-3 durability 
14 H m 10 5.62,10-4 4.11,10-4 durability 
15 L m 11 2.75'10-3 2.879'10-3 durability 
16 H m 11 3.46,10-3 3.36'10-3 durability 
17 L m 12 3.72,10-3 3.528'10-3 durability 
18 H m 12 2.58'10-3 2.53,10-3 durability 
19 W 11 6.26,10- 1 5.12,10- 1 safety 
20 W 12 6.59'10- 1 5.296'10- 1 safety 

the frequencies-weighted RMS acceleration. Since in the case under consideration 
the driver's seat was unsprung, the accelerations at its surface and at the cab 
floor under the seat (see Fig. 4-6) are approximately equal over the frequency 
range of 0.5 Hz-16 Hz. Hence, criterion 4>1 may be set equal to the ISO weighted 
acceleration at the surface of the cab floor (see point 4 in Fig. 4-6). The vibration 
of a driver was ignored. 

The second group of criteria, 4>2-4>9 and 4>11-4>18, incorporates the RMS 
relative displacements. 

As the load-preservation criterion, 4>10, the trebled RMS acceleration of point 
A of the truck platform over the entire frequency range has been taken (see Fig. 
4-6). The value of this criterion must not exceed g=9.8 mls2 , since otherwise 
a load may lose contact with the platform. 

The final group was composed of safety criteria 4>19 and 4>20, which character­
ize the probability of a tire losing contact with the road surface: 

RMSd· 
4>;=3'-R 1 Cj, i=19, 20, j=ll, 12 

j 
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where RMSdj is the root-mean-square tire deformation at a pointj (m); Rj is the 
static load within the tire-road contact zone (measured in Newtons) (see Fig. 4-
6); and Cj is the tire stiffness (measured in N/m). 

Each of the criteria has been calculated for the front and rear truck wheels. 
If at least one of these criteria is equal to unity, then a tire may lose contact 

with the road surface. Therefore, the constraints are imposed on these criteria, 
and they must not exceed unity. Besides, Table 4-5 presents the values of the 
performance criteria for the prototype. 

The whole of the frequency range 0.5 Hz-16 Hz, denoted in the table by W, 
was divided into two intervals, 0.5 Hz-6 Hz and 6 Hz-16 Hz, denoted by L 
and H, respectively. The performance criteria were calculated either for each 
interval taken alone or for the entire range. 

The numbers of the points where the performance criteria values were deter­
mined (see Fig. 4-6) are presented in the fourth column of the table. In the 
designers' opinion, the prototype should have been substantially improved as 
regards the comfort and durability criteria. Optimization was aimed at reaching 
this goal. 

In all, N=4,096 trials were conducted in parallelepiped n, 21 of which have 
entered set D. Of the latter, 20 solutions were Pareto optimal. 

Upon analyzing set D the designers preferred solution 1,820. 
Table 4-5 presents the values of the performance criteria for the prototype and 

the optimal solution. The design variables of the optimal solution are presented 
in Table 4-3. By comparing them with the prototype design variables presented 
in the same table we see that the optimal solution surpasses the prototype in 18 
criteria, which include the most important ones. In fact, by comparing, for 
example, the values of the first and the 10th criteria for the optimal solution and 
the prototype, we see that they were improved up to 30%. However, solution 
1,820 lags behind the prototype in the 11th and 15th criteria. It should be noted 
that the values of the criteria have decreased insignificantly, by less than 5%, 
and the criteria themselves do not belong to the basic ones. Thus, the solution 
of the optimization problem has resulted in finding a solution surpassing the 
prototype considerably. 

Conclusions 

1. By solving the problem of multicriteria identification, the values of the 
stiffness and damping factors ensuring the adequacy of the truck model 
under consideration were found. Feasible boundaries of the design vari­
ables for the subsequent solution of the optimization problem were also 
determined. 

2. The set of feasible models of interest to designers has been found. Some 
of the models surpass the prototype in the basic performance criteria. 
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Recommendations for improving the truck suspension and, as a result, the 
prototype basic performance criteria (comfort, safety, durability, and load preser­
vation) have been formulated. 

Thus, to improve the design, the reduction of the stiffnesses of two engine 
supports as well as of the front cab support and tires, was recommended. At the 
same time, the stiffnesses of the suspension and of the rear cab support should 
be somewhat increased. The values of the damping factors should be altered as 
shown in Table 4-3 for the optimal model 1,820. 
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Determination of Significant Design Variables 

Many real objects are described by means of high-order systems of equations 
with a large number of coefficients for unknowns. These coefficients play the 
role of design variables to be varied when optimizing an object. 

For the purpose of multicriteria optimization, especially if the dimension r of 
the design-variable space is large enough, it is necessary to carry out a sufficiently 
great number of trials for the construction of a feasible solutions set. This number 
increases considerably with the r growth. This requires so great an amount of 
time for seeking the optimum solution that the optimization cannot be carried 
out in many cases. 

To solve multicriteria optimization problems, it is advisable to use methods 
allowing the reduction of the dimensions of the design-variable space by eliminat­
ing the insignificant design variables-those that do not perceptibly influence 
the values of the criteria <l>v, v= 1 ,k. In other words, q of the significant 
design variables, q<r, to which the criteria are sensible, are determined as 
a result of the evaluation of the criteria sensibility to the design variables 
change. And further, in solving the optimization problem, these q of the 
design variables are varied. Here we can single out two approaches in solving 
this problem. The first approach is universal. The regression analysis technique 
may be referred to this approach. The second approach comprises methods 
allowing us to tackle problems of some particular classes taking into account 
their inherent features. The energy balance principle for investigating dynamic 
problems is an example of the approach. To this approach we can refer 
methods taking into account the influence of the system design variables that 
determine interactions between the subsystems. If these interactions happen 
to be weak, the influence of the aforementioned design variables may be 
neglected under certain conditions. 

121 
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5-1. Evaluating Performance Criteria Sensitivity Through Regression 
Analysis Technique 

We now introduce certain definitions and notations needed in the sequel. 
The mean of a functionfia) in a domain D (Dell) is the integral: 

ED(j)= f fia)da 
D 

The variance of a functionfia) in a domain D is defined by: 

varD(j)=[f (j(a)-E(j)2 da]1I2 
D 

The Lrnorm of a functionfia) in a domain D is defined by: 

IlfIID=[f (fia»2da] 112 
D 

(5-1) 

(5-2) 

The L2-distance between two functions fia) and g(a) in a domain D is defined 
by: 

d(j,g)= II f-g IID=[ f (f{a)-g(a»2da] 112. 
D 

The Lrdistance satisfies the triangle inequality: 

d(j,g)$d(j,z)+d(g,z). (5-3) 

The scalar product of two functions fia) and g(a) in a domain D is defined to 
be the integral: 

(j,g)v =E(f,g) = ff(a)g(a)da 
D 

The coefficient of covariance between two functionsfia) and g(a) is defined to 
be the scalar product of the centered functions fia)-Efia) and g(a)-Eg(a): 

Cfg=E(j-Ef,g-Eg) = f (fia)-Efia» (g(a)-Eg(a»da, 
D 

and the coefficient of correlation between two functionsfia) and g(a) is defined 
as follows: 
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If integration is taken over the entire parallelepiped II, we will not indicate the 
domain of integration. 

Standardization of Variables 

Here let us make a remark. Irrespective of what method we will apply to 
evaluate the significance of design variables, the first step always consists in 
standardizing the variables, that is, the design variables and the criteria <l>V<a) 
(v= l,k). Let z be one of these variables. Standardization of z lies in changing 
over to a new variable: 

z-E(z) 
Zst (varD(z»1!2 

After this transformation, we have E(zst) =0 and varD(zst) = 1. In the sequel these 
equalities are always assumed to hold for all design variables and criteria. 

Evaluation of the Significance of Design Variables 

How can the significance of a design variable ai be evaluated for some particular 
criterion? There are many ways of doing this. 

Significance measures based on the norms of partial derivatives 

The first of these methods is based on the use of the mean of the square or 
the absolute value of the partial derivative a<l>laai in the parallelepiped II. In 
what follows we consider the mean squares of derivatives only. Accordingly, 
the proposed criterion can be expressed as 

= 1 1 a<l>(a) 1 12 =f(a<l>(a»)2 
II,ai aa aa. da 

t I 
II 

(5-4) 

Indeed, if the design variable ai has in general no influence on the functional 
<I>(a) , then the derivative a<l>laai=O in the parallelepiped II and the mean of 
the square of the derivative should also be zero (hai=O). At the same time, it 

is reasonable to assume that the criterion <I>(a) is more sensitive (on the average) 
to the variations in the parameter (the design variable) ai than to the variations 
in the parameter aj' provided h.ai>I1,aj' 

In the expression (5-4) we first determine the derivative, then square it, and 
finally integrate it to calculate the norm. Or we may proceed differently. We 
can first average (integrate) the criterion <I>(a) with respect to a set of design 
variables IJ;, i.e., 1J;=(a" ... ,0.;-1,0.;+" ... ,ar ) derived from a after eliminating 
the design variable ai, in other words, we pass on to the function: 
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(5-5) 

where II~i is a parallelepiped in the space of the design variables (Ji. Now we 
differentiate the function thus obtained with respect to Cli and then calculate its 
nonn. As a result, we arrive at the significance measure 

I .=1 Id<l>;(Cli) 1 12= I (d$i(Cl;))2dClO 
2,,,,, dCli dCli" (5-6) 

"€Ii 

However, in averaging a function of the type (5-5), we may obtain $;(Cl;);= 
const. For example, consider a function of two variables, say <I>(a)=sin Cl1 
sin Cl2 (0:5Cli:521T, i= 1 ,2). Now on averaging with respect to Cl2, we obtain 
<l>1(Cl1)=0. Therefore, in general, we have to use modified criteria, which leads 
us to the function 

(5-7) 

Other modifications of criteria helpful in increasing the computational effi­
ciency are considered in describing the respective algorithms (see Estimates of 
the significance measures, II and lz). 

Significance estimate based on averaging with respect to a design variable 

In this case, to estimate the sensitivity of a criterion <I>(a) to a design variable 
Cli, we first eliminate the influence of this design variable on the criterion <I>(a) 
by averaging the criterion with respect to Cli and thus obtain a function of design 
variables (Ji: 

:«*~ :« I <I>(a)dCli a, a, 
IIo.j 

Then we compute the sensitivity measure 

(5-8) 

If <I>(a) does not depend on Cli, then obviously tIIi((Ji)=<I>(a) and h"'j=O. It is 

also reasonable to assume that, if I 3''''j>h'''j' then the design variable Cli exerts 

greater influence on <I>(a) than the design variable Clj. 
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Use of approximations of dependencies for estimating the significance of 
design variables 

In order to estimate the degree of the significance of the design variables we 
may from the very beginning make an attempt to use, instead of the criterion <I>(a) 
itself, some or other its approximation that has a sufficiently simple analytical 
expression 

<1>(0:)=<1>(0:) +d(O:)+E, (5-9) 

where <1>(0:) is the approximating function from some class of functions IF. 
In (5-9) d( 0:) is the approximation error due to the improper choice of the approxi­

mating function <1>(0:). This error must satisfy the condition f d(o:)do:=O. While 
"fitting" the approximation, an attempt is made to make "on the average" the quan­
tity d(o:) minimal, say by minimizing IIdll2 or, in other words, to minimize the L 2-

distance between the initial function <1>(0:) and its approximation. 
Also, E is the random error due to the inaccuracy in the measurement of the 

values of <1>(0:), to the presence of design variables which have not been taken 
into account, etc. Its mathematical expectation should be zero, that is, E(E)=O. 

In our case (active computational experiment) measurement error may arise 
solely due to the insufficient accuracy in computing the values of <1>(0:), for 
example, in solving differential equations, and/or due to round-off errors. In 
what follows we neglect the error E. 

Suppose that Wi! have derived the approximation <1>(0:) of the criterion <1>(0:) 
and let 82=d2(<I>,<I»/varD(<I». Now eliminating ai and using the triangle inequal­
ity, we obtain 

'" "" "-

d( tJsi, <I> ):5d( <1>, <1» + d( tJsi, <I> ):5d( <1>, <1» + d( tJsi , tjJi) + d(<I> ,tjJ;). 

Hence, we have 

where 

I (tjJ;(lli)-<I>(0:))2do: 
j2 _n ______ ~~----
3,(l; varD(<I» 

Therefore, if the approximation is of good quality (8 is small), the estimate of 
the measure of significance /3,(l; will be close to its true value. 
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Use of regression analysis for approximating the performance criteria 

We will apply the regression approach to derive the approximation <I>(a). 
From the viewpoint of regression analysis the design variables UI, ... ,Ur are 

input variables governing the conditions for the functioning of the system. We 
will also call these design variables predictors or explaining variables. 

The criteria <l>i are output variables that we may also call dependent or resulting 
variables. Suppose, as a result of modeling, we have obtained N vectors of 
dimension (r+k) of the type: 

() Ii) () (j) -<l>r , ... ,<1>" , ur , ... ,Ur j=l,N. 

The vectors form a data matrix Z of dimension NX(r+k) with its rows consisting 
of components of these vectors. The matrix A composed of the values of the 
design variables, with its rows being formed by components of the vectors a(j) 

(j= 1 ,N), is, from the viewpoint ofregression analysis, a design matrix. Therefore 
a data matrix is obtained in the course of an active experiment. 

Basic regression models used in estimating the significance measures 

Now, we will approximate the dependence <I>(a) with the help of linear or 
generalized linear model: 

r 

<I>(a)=bo+ 2: biui+dl(a) (5-10) 
i=1 

r 

g(<I>(a»=bo+ 2: bi<l>i(ui)+d2(a) (5-11) 
i=1 

(5-12) 

In all the three cases, parameters bi are to be estimated. Moreover, functions 
g() and <l>i() in (5-11) and #) in (5-12) are to be estimated too. The functions 
and parameters are evaluated from the minimality condition of the integrals 

8}= f d}(a)da (j= 1,2,3). 
II 

Linear multiparametric regression (LMR) 

Linear multiparametric regression (Draper and Smit 1966) gives the approxima­
tion of the function to be evaluated as follows: 

y=(B'X)+bo+8, (5-13) 



www.manaraa.com

Determination of Significant Design Variables I 127 

where B=(bb'" ,br), is a vector of unknown coefficients of the regression equa­
tion (5-13) and (B'X) is the scalar product of the vector B and vector of the 
values of variables X. Here, any criteria <l>i(a) (i=I,k) can be taken as the 
variable y, and the vector X represents some subset of the variables from a or 
predefined functions of these variables. For example, if there is only one variable 
x, then by introducing the variables Xi=Xi, i= l,q, we obtain a polynomial model. 
Of importance here is the fact that the model should be linear with respect to 
the unknown coefficients of the regression equation (5-13). 

The parameters of Band bo are estimated by the least squares method (LSM) 
(Seber 1977; Aivazyan et al. 1986), i.e., from the condition of minimum of the 
sum of the squares of residuals or mismatches: 

where Yi is the criterion value at the ith point; and Xi is an appropriate set of 
design variables values or functions of them. 

This result in a so-called normal system of equations (Seber 1977; Aivazyan 
et al. 1986), whose solution yields the desired estimates of the parameters: 

{SB=CyX 
bo =E(y)-(B'E(X)) 

(5-14) 

where the matrix S=C'C is called the matrix of normal system of equations; C 
being a design matrix (in case the vector X coincides with the vector of the 
design variables a, i.e., when we approximate the criterion <I>(a) in the space 
of the initial variables without using any additional functions of the initial vari­
ables, we find C=A). 

Cyx=E(yX) is the vector of covariance between the variable Y and the variables 
from X, and Cyx is its estimate obtained by averaging over the elements of the 
design matrix of the experiment. 

Quality of linear regression equation we will measure with the help of the 
determination coefficient 

Let us consider in more detail two regression models linear in parameters of 
the regression equation. The first model uses only the ai as the variables, whereas 
the other involves the squares of ai (i.e. af, i=1,r) as additional variables. 
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Regression linear both in parameters of the regression equation and in a 

The analytical expression of the model is given by (5-10). Its design matrix 
C is simply the matrix A consisting of the design variables a found in an 
experiment. Since, by conditions of generation, the variables al, ... ,ar are inde­
pendent, in this case the matrix of the set of normal equations is also given by 
S=AA'. Normalization conditions imply that the diagonal elements ofthe matrix 
S are equal to unity (E(af) = 1), while off-diagonal elements are close to zero. 
(Since pij=E(a,-n)=O for i¥-j, the difference from zero is only due to the error 
in evaluating the integral where Pij is approximated by a sum over a finite set 
of points.) 

Hence, it follows that the matrix S is well-conditioned (Aivazyan et al. 1986; 
Seber 1977; Belsley et al. 1980) (correlations between the explaining variables 
are small) and the solution of the system of normal equations computationally 
does not cause any difficulty. 

Since the variables <I> and ai (i= 1 ,r) are normalized, the regression coefficients 
bi coincide with the correlation coefficients between <I> (<I>=y) and ai' 

Regression linear in parameters of the regression equation with the 
addition of squares of explaining variables a 

The regression equation in this case is of the form: 

(5-15) 

Here, we have a 2r+ I-dimensional vector of coefficients (the regression equa­
tion parameters) bo, bJ, ... ,br+l, ... ,br+r-

The rows of the design matrix C contain 2r elements (in each row). The first 
r elements of the ith row of the matrix C coincide with the elements of the 
corresponding row in the design matrix A. The other r elements are the squares 
of the values of the design variables aV) corresponding to the point aUl. Thus 
the jth row (the row corresponding to the jth experiment) of the matrix C is 

(j) (j) (j) 2 (j) 2 a l , ... ,ar , (a l ) , ... ,(ar ) . 

The off-diagonal elements of the matrix of normal elements are again close 
to zero here, because 

E( aia}) = 0 (i ¥-j) (by virtue of independence) and 
E(a[) =0 (by virtue of symmetry). 

(Recall that the variables are normalized and centered.) Off-diagonal elements 
are, as before, different from zero only due to the replacement of integrals by 
the sums over finite sets of points. 
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Thus, in this case the matrix of a system of nonnal equations is also well­
conditioned. 

Estimation of significance measures on the basis of linear regression 

In the case of regression linear both in parameters and in variables a, for the 
three significance measures we have 

and for regression involving the second powers of the variables, we have 

These fonnulas can be easily derived by direct calculating expressions (5-4), 
(5-6), (5-8), after substitution of y from (5-13) or (5-15) for <1>. 

Drawbacks of estimating the design variables significance by linear regres­
sion. Suppose we have obtained the coefficients bi of the variable ai to be close 
to zero, that is, bi=O. Does it imply that the design variable is of small signifi­
cance? Let us examine in detail how to compute the coefficient bi' Since in this 
case the matrix of the system of nonnal equations is almost a diagonal matrix 
with diagonal elements being equal to unity, we have (y=<I>(a» 

bi=P<I>(a)a= f ui<l>(a)da. . n 

Integrating by parts, we obtain 

b·= f uf(a<l» da 
I I aai ' 

n 

that is, bi is equal to the weighted mean (with weight w(a)=aT) of the partial 
derivative of <I>(a) with respect to ai' Its value may be close to zero even if the 
value of the integral h,ai is considerable. 

In practice, we may use the following rule: If the detennination coefficient is 
not very close to 1, smallness of the coefficient bi does not imply that the 
significance of the design variable ai is small. If, however, the coefficient bi is 
considerably different from zero, the design variable should be regarded as 
significant. 

Analogous reasoning can also be applied to more complicated parametric 
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regression models. Therefore a need arises for direct estimating the measures, 
II and /Z, of significance of the design variables. These estimates are obtained 
with the help of modified local parametric regression analysis techniques. 

Projection pursuit regression 

This approach is used for estimating parameters and functions in regression 
models of the kind (5-12). The technique using the projection pursuit regression 
for approximating regression functions was suggested by Friedman and Stuetzle 
(1981). 

Suppose, we have a data matrix consisting of N (p+ I)-vectors (y,X) (p is 
the number of the components of the vector X, i.e., the number of explaining 
variables) and our aim is to restore the function of regression of the variable y 
using the components of the vector X. Assume now that the regression function 
can be represented as follows 

y= ± gj (UjX)+e, (5-16) 
j=1 

where gi ) are unknown functions; Uj are unknown vectors, and q is the number 
of projections, which may also be unknown. 

Let us describe the computation procedure. First, we seek a function gl( ) and 
a vector U I such that 

N 

flT= L (Yj-gl(UiX)2~min. 
j=1 

Since the variable y is normalized, we find the quantity I-fiT to coincide with 
the determination coefficient. 

Nonparametric estimates of local regression (knn-smoothing) 

One of the possible and sufficiently effective methods of nonparametric estima­
tion of a one-dimensional regression function (and thereby, the conditional mean) 
lies in evaluating the local polynomial regression in the neighborhood of the 
point under consideration. We will study polynomials of orders 0, 1, and 2 
that correspond to local mean, local linear regression, and local second-order 
polynomial regression, respectively. 

For this purpose we apply order statistics. Let zt. ... 'zn be a sample of the 
explaining variable values, and z(1), •.. ,z(n) be the corresponding order statistics 
(Aivazyan et al. 1983), that is, the values Zt. ... ,Zn arranged in the increasing 
order. 

Let t be a positive integer such that t<nI2. Now we search for the predicted 
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value of the dependent variable Y(j) at the point z(j)' using a polynomial regression 
of orders 0,1, and 2 constructed on the basis of observation results 

Z(j-t)+, z(j-t)+ + b z(j},"" Z(j+t)_ -1, Z(j+t)_, (5-17) 
where (j+t)_ = min(n,j+t), (j-t)+ = max(l,j-t). 

The number of observations may vary from t to 2t, depending on the position 
of the point z(j). Linear regression and polynomial regression of the second order 
are evaluated by the least squares method. 

This procedure can be modified in different ways, for example, the very point 
z(j) can be excluded from "training." 

Now let Y(k) and Y(k) denote, respectively, the observed and predicted values 
of the dependent variable at the point Z(k). 

Let us now introduce a mean normalized square deviation: 

(5-18) 

The quantity (1 - 82) can be regarded as a nonparametric estimate of the determina­
tion coefficient for the dependence between one-dimensional Y and z. 

If the points Zj are the projections of multidimensional points, that is Zj=(U'Xj), 
then we can use the derivative of 82 with respect to U and thereby obtain an 
estimate of the gradient needed for implementing the effective optimization 
procedure. 

Estimates of the significance measures It and 12 

We will evaluate the criteria It,aj' haj using the local-parametric regression 
(see, for example, Aivazyan et al. (1983) and Aivazyan et al. (1986» and 
modified ACE-regression (see Breiman and Friedman (1985», respectively. 

Local-parametric approach to estimating the criterion II 

The basic idea here lies in approximating the functional dependence <1>(0.) not 
over the entire experiment domain n, but in the neighborhoods of a certain 
subset § of randomly chosen elements of the design matrix A. In the limiting 
case the subset § may contain all the points (rows) of the matrix A; but usually 
this subset is formed by choosing nsN points from A. 

Without loss of generality, we assume that the variables a are preliminarily 
normalized so that the mean of each variable is zero and the variance is equal 
to unity. As the neighborhoods, we will take spheres. 

If the function <1>(0.) is twice differentiable with respect to a, we can write 
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its Taylor expansion in the neighborhood of a sphere Op(ao) of radius p with 
the center at aoE§, as 

<I>(a) = <I>(ao) + ( B'(a-ao) )+( (a-ao)'S(a-ao) )+8(p3). (5-19) 

Here, B= grad(<I>(a»lu=uo stands for the vector of the first derivatives of the 
function <I> and S represents the matrix of the second derivatives. 

Now applying the least squares method to the elements of the design matrix 
that fall inside the sphere Op(ao) to evaluate the linear regression (see Linear 
multiparametric regression (LMR», we obtain the estimates of the first derivatives 
as the coefficients in the linear regression equation (5-13). 

In practice, we find for the point ao the sphere of minimal radius that contains 
exactly K neighboring points, rather than specify the radius p of the sphere 
beforehand. Thus, the coefficients of the linear regression equation are evaluated 
from the data matrix corresponding to K points. Evidently, the inequality K<r 
must hold in this case. 

Estimate of the significance measure 12 : Specific features of the alternate 
condition expectation (ACE) algorithm 

Let us fix one of the design variables, say, ai. The significance measure 12 
can be evaluated with the help of a modified ACE-regression algorithm (Breiman 
and Friedman 1985). 

Estimating the averaged criterion <l>j{ai) (see (5-7)) 

In order to apply the ACE-regression for approximating the unknown function 
<l>i(ai) and its derivative, first we have to derive the values of this function at 
least with some error, i.e., to average the criterion <I>(ai), at ai=z, over the 
design variables contained in the set (Ji. 

Several approaches can be utilized for this purpose. We will apply the technique 
based on the use of zero-order knn-smoothing (for details, see Nonparametric 
estimates of local regression (knn-smoothing». 

In our case this approach is applied as follows. First, the values of <1>(<<), 
where a E A are arranged in the increasing order of the values of ai (ai is the 
ith coordinate). Then we fix a certain number Ko of "neighbors". Let 
ai( I) < ... <ai(N) be the variational sequence (order statistics) derived for the values 
of ai. For the estimate of the function <l>i(ai) at the point ai=aiU), let us take 
its mean over the smoothing interval LU) (Ko), i.e., over the points with the 
numbers (j-Ko)+, ... , (j+Ko)-

- - 1 
<l>iU)=<I>i(aiU»=-n 2:<I>(ai(l), (Ji(l), 

(j) I 
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where n(j) is the number of points within the interval Lv) (Ko) and summation 
is taken over the points of this interval. The quantity <lij(j) is exactly the estimate 
of the value of the function <Ii;(Uj) la;=a;w. This estimate can be expressed as 

(5-20) 

where d(j) is the regular error due to the averaging of the variable Uj over an 
interval L(j) (Ko) of a finite length hj; T(j) is the random error due to the estimate 
of the integral (5-5) made using a finite number n(j) of randomly distributed 
points in the parallelepiped IIp;. Since the experimental points are uniformly 

distributed, hj=n(j'jN; dj-O(h]). The mean square of T(j) is related to the variabil-

ity of the criterion $(a)!a;=a;w in the parallelepiped IIp;: the greater the scatter 

of the values, the greater the mean square of TV). Here, as everywhere in nonpara­
metric estimation, we find ourselves in a situation where the regular and random 
errors exist in a balance: On reducing the regular error by decreasing the interval 
length h(j) (in our case, the number of neighbors Ko), we increase the random 
error T(j) and vice versa. Both the errors can be decreased simultaneously only 
by increasing N-the number of experiments. 

Removal of the criterion component linear in design variables 

The random component TV) can however be decreased by modifying the crite­
rion $(a) so that the modified criterion would have less scatter in the parallelepi­
ped IIp;" But here, care should be taken so that calculation of the modified 

criterion would not become essentially more complicated as compared with the 
calculation of the initial criterion. 

If the criterion $(a), linear in design variables, a is approximated by the 
least squares method, the determination coefficient quite often lies in the range 
=0.5-=0.8. Though such an approximation cannot serve as a basis for choosing 
the insignificant design variables relying on the values of the regression coeffi­
cients, it can nevertheless be successfully applied to modify the criterion $(a). 
It is just in evaluating the significance of the design variable Uj that we use the 
modified criterion 

-
$(a)=$(a)-(GjlJj)-gOi, (5-21) 

where G j is an (r-l )-dimensional vector of the coefficients of the linear regression 
of the criterion $(a) using the design-variable vector pj reduced by eliminating 
the design variable Uj and gOj is the free term in the regression equation. Thereafter 
the value of the criterion ci>(a) is squared and we obtain the modified criterion 
$mod(a)=ci>2(a), which we apply in the sequel. In order to modify ("clean") 
the criterion it is more effective to use linear regression containing second-order 
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terms or projection pursuit regression with a small number of term functions 
(q=I,2). 

From the foregoing it is clear that when we change over to a different design 
variable (estimate of its significance), the vector G; is to be recalculated. 

Estimating the derivative 

After determining the values of the function <1>;( u;) (or the function correspond­

ing to the modified criterion) the derivative dd<l>i is evaluated as follows: first a 
U; 

new number KJ of nearest neighbors is fixed and then the first- or second-order 
knn-smoothing is applied to the function <I>;(u;) (in other words, the estimates 
of local linear or quadratic regression are constructed). 

Suppose in the neighborhood of the point u;U) we obtain the following regres­
sion equation: 

<I>;(u;)=au;+b (first-degree equation), 
- 2 <I>;(u;)=cu; +du;+e (second-degree equation). 

Accordingly, the local estimates of the derivatives are 

<I>~ . = d<l>; = { a for linear regression, 
l(j) du; 2cu;+d for polynomial regression 

The estimate for the measure of informativeness of U; is 

Algorithm 

Finally, the algorithm for determining the significance of design variables for 
the criterion ha; can be written as follows: 

Step 1. The design variables are normalized so that they all have unit 
variance and zero mean. 

Step 2. Cycle with respect to i=I, ... ,r. 
1. Estimation of some approximation <P(P;) of the criterion for the 

reduced design-variable vector Pi, say, linear regression coeffi­
cients, <P(P;)=(G;P;)+gO;' 

2. Change over to the modified criterion. 

<l>mod( a) = (<I>( a) - <I>(p;»2. 
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3. Ordering the values of the design variable ai' Zero-order 
smoothing of function <l>mod(a). 

4. Estimating the derivatives at the points of the variational series 
aUj) and evaluating the significance measure for the design 
variable ai' 

End of the cycle with respect to i. 

Step 3. Arranging the design variables of a in the order of their significance 
increase. 

Example 

Determination of significant design variables in operational development of a 
truck (see Section 4-5). 

Estimation of the closeness criteria, <1>", sensitivity to the change of the 
mathematical model parameters, aj, (the multicriteria identification 
problem) 

As the variables, we consider here the equivalent stiffness coefficients and 
damping factors (see Table 4-3 and Fig. 4-5). The criteria of the aforementioned 
three groups, <1>1, <1>[, and <I>?, are regarded as proximity indexes. 

To investigate the sensitivity of the criteria with respect to the variables we 
use the significance measure h A sample of 512 trials within parallelepiped III 
has been considered. 

Table 5-1 gives the values of the significance measure 12 for each reduced 
variable and each criterion. The closer the values in the last column to unity, 
the higher is the accuracy of approximating the respective criteria by using 
formula (5-11). 

The dimension of the thereby obtained matrix of values of the measure h 
values is 65X17 (65 proximity criteria and 16 variables have been considered, 
the last, 17th, column characterizes the accuracy of approximating each of the 
criteria by using formula (5-11). This column gives the values of determination 
coefficients). Because of the large size of the matrix, Table 5-1 gives only a 
fragment for three proximity criteria <1>2, <1>23, and <1>34, and 11 variables. 

Table 5-1 

Determination 
III 112 lIS Il{; 119 1110 1114 illS 1116 1119 1120 coefficients 

<112 0.674 0.017 0.0 0.0 0.053 0.003 0.007 0.0 0.0 0.001 0.0 0.9 
<1123 0.003 0.0 0.0 0.002 0.006 0.013 0.605 0.0 0.0 0.012 0.03 0.97 
<1134 0.0 0.0 0.0 0.002 0.01 0.700 0.005 0.0 0.0 0.012 0.03 0.97 
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Analyzing the matrix, we select the variables whose influence on all criteria 
is sufficiently small. We consider the influence of a variable on a criterion as 
small if the corresponding value of 12 is less than 1% of the sum of elements in 
the row corresponding to the criterion. In Table 5-1, such variables tum out to 
be a5, a6, a15, and a16. In terms of the truck characteristics, a5 and al5 are the 
values of the equivalent stiffness coefficient and damping factor, respectively, 
for the front support of the platform; a6 and al6 are analogous variables for the 
rear support of the platform. 

Table 5-1 shows that the influence of these variables does not exceed 1 % (for 
criteria that are not presented in Table 5-1, the results are similar). 

We can try to reduce the number of variables to be varied when optimizing the 
system by eliminating insignificant variables. In this case, the insignificant vari­
ables are kept constant when calculating the characteristics of the mathematical 
model. For example, they can be chosen to be equal to the values of the respective 
parameters of the prototype. Reducing the variable vector dimension, we thereby 
reduce the time required for carrying out the computational experiment. 

To confirm the applicability of such an approach, we randomly selected 100 
models (solutions) within 16-dimensional parallelepiped nl and calculated the 
values of all closeness criteria for each of the solutions. Then the closeness 
criteria were calculated for the 100 models with the values of the insignificant 
variables, a5, a6, a15, and a16, being fixed and equal to those of the prototype. 
Finally, the corresponding criteria values calculated for 16- and 12-dimensional 
variables vectors were compared with each other. 

The analysis shows that for the majority of criteria, the discrepancies are zero 
or rather insignificant. It allows making a conclusion that the values of the 
closeness criteria changed insignificantly after having reduced the dimension of 
the parallelepiped. This confirms the expedience of reducing the dimension 
of the variables vector. 

Determination of the performance criteria sensitivity to design variables in 
the problem of improving the automobile suspension system 

When solving this problem we considered 20 performance criteria reflecting 
the requirements of comfort, durability, load preservation, and safety. Twenty 
design variables were varied. 

We have taken a sample of 512 trials and determined the influence of the 
design variables on each of the criteria. Like in the identification problem, 
insignificant design variables have been determined. These tum out to be a5, 

a6, a15, and a16. Thereafter, these design variables were no longer varied. The 
optimization results in this case coincide with those obtained in Chapter 4 (see 
Table 4-5). In some cases, the reduction of time necessary for the optimization! 
identification of the variables can be achieved by using regression methods. The 
presence of insignificant variables can be of practical use. Without breaking the 
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optimality, a designer can adjust these variables so as to meet some additional 
requirements, for instance, technological conditions of the manufacture process. 

5-2. The Energy Balance Principle for Determining the Dependence of 
Criteria on Design Variables 

The proposed technique is based on the parameter space investigation method 
and the energy balance principle (Masataka 1977; Gurychev et al. 1985). The 
technique can be used for optimization of a wide class of mechanical structures 
in which:' 

• The potential and kinetic energies are distributed between subsystems 
unevenly . 

• The dissipation is small, and natural modes of oscillations differ insignifi­
cantly from natural modes of oscillations in the conservative system. 

• performance criteria reflect the static and dynamic compliance of the 
system, resonant frequencies, vibration resistance, metal consumption, 
etc. 

It is known that the kinetic (n and potential (ll) energies of the system can 
be represented as follows 

T_l~ ·2 In 2 
-2 L.. mixi , II=2 L CiXi, 

i= 1 i= 1 

where Xi are physical coordinates of the system, while mi and Ci are its inertia 
and stiffness coefficients, 1 ::5i::5n. 

Following the energy balance principle, for each of the n natural frequencies, 
we determine the contribution of individual elements of the structure to the 
kinetic (n and potential (II) energies. The elements are characterized by different 
design variables (geometrical dimensions, stiffnesses in different directions, 
masses, damping factors, etc.). 

To determine T m and lIm corresponding to the mth natural frequency Wm 

(l::5m::5n) we use the following relationships (Masataka 1977; Kaminskaya and 
Gringlaz 1989) 

W2 n n 

Tm= 2m qm L L Mi/Yim'Yjm, 
i= 1 j= 1 

qm n n 
II m=T L L Kij'Yim'Yjm 

i= I j= 1 

(5-22) 



www.manaraa.com

138 / Multicriteria Optimization and Engineering 

Here, Mij and Kij are the elements of inertia and stiffness matrices; 'Vim and'Vjm 
are coefficients characterizing the shape of the system oscillations corresponding 
to the natural frequency Wm; i and j are the numbers of the generalized coordinates; 
n is the number of degrees of freedom; and qm is a normalizing factor. 

In many cases, for each of the natural frequencies, one can indicate some 
elements whose potential and kinetic energies many times exceed the energies 
of the other elements. To determine such significant elements it is convenient 
to normalize the coefficients 'Vim and 'Vjm so that both T m and lIm corresponding 
to the natural frequency Wm are equal to unity. Then we select the significant 
elements whose contribution to the kinetic or potential energy is large. When 
doing this, it is necessary that the sum of energies of the other elements not 
exceed a prescribed level, such as 10% or 20% of the total energy of the system. 
Based on this, we determine insignificant elements. By analogy, we will consider 
the design variables describing the aforementioned elements as significant or 
insignificant. 

However, we still have to check whether the insignificant design variables 
essentially influence the performance criteria. Depending on this, we can conclude 
about the expedience of varying the insignificant design variables when solving 
the optimization problem. 

Let us describe the main stages of problem solving. 

1. The designer determines an r-dimensional vector of the design variables 
and specifies the ranges of their variations: at 5,a(!'5at * , i= r.r. 

2. According to the parameter space investigation method, n tests are carried 
out, with n being comparatively small. In each ith test, we determine 
significant design variables Ii' 

3. Having completed all n tests, we find the number of significant design 
variables, I: 

1=1; +/2+ ... +l~, 

where I; is the number of the significant design variables in the ith test 
that were not significant in all previous tests. 

4. A new, I-dimensional, vector of the design variables is formed, 15,r. 

5. The errors are determined: 

a<l>r.l·= I <I>~'i-<I>~'ill00~ i= 1 ,n 
V,I <l>r . v, 

V,I 

(5-23) 

where <I>~,i and <I>~,i are the values of the vth criterion in the ith test; r 
and I being the dimensions of the respective vectors of design variables. 

6. The conditions a<l>~'55,a<l>t* are checked, where a<l>t* are the admissi­
ble errors. In case these conditions are satisfied, we solve the multicriteria 
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optimization problem, with the dimension of the design-variable vector 
being I, and the number of tests being N, N>n. 

7. For all obtained feasible solutions, the conditions a$~}:sa$~* are veri­
fied. If these conditions are satisfied, we consider the feasible solutions 
as having been obtained with the prescribed accuracy. 

In the next section, we will consider the determination of significant design 
variables as applied to the example of designing the grinding machine structure. 

5-3. Example: Determination of Sensitivity of the Cylindrical Grinding 
Machine Structure Criteria 

The Basic Elements of Calculation Schemes and Formation of the 
Equations of Motion 

Numerous experimental data indicate that the most Intense vibrations of tools 
and workpieces, caused by vibration of the machine-tool structure, occur, as a 
rule, within the frequency range up to 150 Hz. Therefore, in calculation, the 
majority of the structure elements may be modeled by beams and rigid bodies. 
The former simulate slides, columns, beds, and traverses. 

Characteristically, the proper deformations of rigid bodies are small compared 
to contact strains in joints (e.g., spindle and wheel heads). Rigid bodies and beams 
are connected by weightless elastodissipative elements whose characteristics are 
determined by the parameters of joints, guideways, etc. A structure interacts 
with the foundation via the support elements of a machine tool. 

In dynamic calculations structures are usually considered linear oscillatory 
systems described by the equation of motion 

.. . 
MX+DX+KX=F(t) 

F(t) is an n-dimensional column vector of external forces; M is the matrix of 
inertia; K is the stiffness matrix; and D is the damping matrix. 

In considering structures the model of viscous friction is used. 

Construction of the Mathematical Model and Determination of the Static­
Dynamic Characteristics of a Structure 

Cylindrical grinding machines are intended for machining cylindrical, tapered, 
and end-face surfaces of rotational parts. 

A workpiece is held between the centers of the workhead and tailstock, which 
are mounted on the rotatory table. The main motion is the grinding wheel rotation. 
A workpiece is rotated in the centers, and the cross and longitudinal feeds are 
implemented by displacing the wheelhead and the work table, respectively. 
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Experiments have shown that the cylindrical grinding machine under consider­
ation loses stability at a frequency of 74 Hz. 

The analysis of experimental modes of vibration has allowed construction 
of the calculation scheme of the machine tool's structure (see Fig. 5-1). The 
mathematical model shown in Figure 5-2 incorporates concentrated masses and 
elastodissipative links. The number of degrees of freedom is 48. 

In Figures 5-1 and 5-2 K l - 2 is the reduced stiffness of the grinding wheel­
wheelhead joint; K2- 3 is the vector of stiffnesses of the spindle head guideways 
and the feed drive, K2- 3 = (K~-3, K1-3, K~-3, K~':3' Ki:-3' Ki~3); K3-4 is the vec­
tor of stiffnesses of the joint between the front and rear portions of the machine 
tool bed; 14-5 is the vector of stiffnesses of the table guideweays and drive; 
K5-6 and K5- 7 are the vectors of stiffnesses of the joints connecting the workhead 
and the tailstock with the table; 14-8 and K7- 8 are the vectors of stiffnesses of 
the workhead and tailstock centers; K3 is the axial stiffness of the supports under 
the wheelhead bed; K4 is the axial stiffness of the support under the table bed; 
and Mi , i=I, ... ,8 are the masses of the basic units of the cylindrical grinding 
machine under consideration. 

The frequency and amplitude/phase responses within the cutting zone were 
calculated using the finite element model of the structure and compared with the 
corresponding experimental characteristics. It was found that within the range 
of the most vibroactive frequencies, 50-70 Hz, the experimental and calculated 
characteristics compare favorably. Hence, the dynamic model ensures an ade­
quate description of the machine tool prototype under study. 

The Problem of the Machine Tool Structure Optimization: 
Performance Criteria 

The performance criteria characterize the consumption of metal, the static and 
dynamic compliances of the structure within the cutting zone, and vibration 

2 
r----:::o-""f 

Figure 5-1 Schematic of a cylindrical grinding machine. 1 Grinding wheel, 2 wheelhead, 
3 rear portion of the bed (under the wheelhead), 4 front portion of the bed (under the 
table), 5 table (together with the rotary portion), 6 headstock, 7 tailstock, and 8 workpiece. 
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Figure 5-2 Dynamic model of the machine tool structure. 

stability of the structure (using the Nyquist criterion). The expressions for the 
criteria under consideration (with the exception of the metal consumption) are 
based on the dependence of the structure dynamic compliance w(ioo) within the 
cutting zone. 

( . ) I1YI-8 
W zoo =----p-

where P is the variable component of the cutting force; I1YI-8 is the relative 
displacement of workpiece 8 and grinding wheel 1 along the Y-axis (see Fig. 
5-1). Let us compile the performance criteria vector «1»=(<1>1. <1>2. <1>3. <1>4). 

1. The metal consumption per machine tool 
8 

<1>1 = L Mj ~ min. 
j=1 

2. Static compliance 
<l>2=W",=O~ min. 
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3. Vibration stability of the structure (the Nyquist criterion), 

<1>3= max( - Re w) ~ min. 

4. Vibration activity within the cutting zone. 

<l>4=maxlwl~ min 

where Iwl= ~(Re w)2+(Im w)2. 

Criteria <1>2 and <1>3 are related to the machine tool productivity, and <1>4 to the 
machining accuracy. 

Selection of Significant Design Variables 

The following design variables were varied: masses, M3 and M4 , of the two 
portions of the machine tool bed (these design variables are denoted by 0:, and 
0:2); the axial stiffness of the supports under the wheelhead bed, K3 (or 0:3); the 
axial stiffness of the supports under the table bed, K4 (or 0:4); the stiffness of 
the lead screw of the wheelhead feed, K~-3 (or 0:5); and the interference, (0:6). 
The latter two design variables determine the stiffness characteristics of the 2-3 
joint. A specified value of interference was used for determining the wheelhead 
guideways stiffnesses K2-3. Six geometrical design variables of the joint 3-4 
between the two portions of the bed were also varied. These design variables 
were used for calculating linear stiffnesses, K~_4' K~_4' and K~_4' and angular 
stiffnesses Kj':'4' Kj':"4' and Kj':4· Thus, at the start of the study the design-variable 

vector was u=(o:" ... ,O:12). 
U sing the calculated and experimental values of static and dynamic characteris­

tics of the structure, it was found that the most intensive dynamic processes 
occur for the fifth, sixth, and seventh modes of vibration within the frequency 
range 50-70 Hz. 

In line with the technique described in the preceding section, n=32 trials were 
conducted in the 12-dimensional parallelepiped. The energy balance was analyzed 
for the fifth, sixth, and seventh modes of vibrations. Table 5-2 presents the 
results of the analysis for model u'. As we see, the major contributions into the 
kinetic energy are due to the masses of the wheelhead M2, the rear portion of 
the bed (under the wheelhead) M3 , and the front portion of the bed (under the 
work table) M4 . 

The potential energy of vibrations is mainly determined by stiffnesses of joint 
2-3, as well as K3 and K4 • Similar results were obtained for all the 32 trials. 

The results have shown that the set of significant (substantial) design variables 
incorporates the first six design variables, 0:,-0:6, of the total number of 12 
design variables. In all trials the contribution of the linear and angular stiffnesses 
of joint 3-4 proved to be less than 5%. (In line with technological conditions, 
the wheelhead mass could not be varied.) These results imply that it is advisable 
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Table 5-2 

Design Variables 

Name 

Wheelhead mass 
Mass of the bed under the 

wheelhead 
Mass of the bed under the 

table 

Stiffness of the lead screw 
for wheelhead feed 

Stiffness of the wheelhead 
guideways 

Axial stiffness of the 
supports under the 
wheelhead bed 

Axial stiffness of the 
supports under the table 
bed 

Designation 

K~.3 

Kh Kh Iq:3' Iq:3' Iq:3 

K3 

K4 

Distribution of 
Vibration energy 

(%) 

Natural frequencies 
(Hz) 

59.8 64 68.2 

31 30 22 
38 26 22 

22 28 36 

25 26 16 

8 II 6 

44 23 40 

14 25 32 

to optimize the structure by the first six design variables only. All other design 
variables were assumed to be constant and equal to those of the prototype. 

This conclusion concerning the advisability of varying the first six design 
variables when optimizing the structure was confirmed by comparing the perfor­
mance criteria calculated for 32 trials in the six- and 12-dimensional parallel­
epipeds. 

Table 5-3 compares the values of <I>~3 and <l>e,i for the five trials, «2, « 7 , «18, 

«27, and «32. We see that the errors a<l>~~,6 are insignificant. 
The latter were calculated using the formula 

1<1>12_<1>6 1 
a<l>12,6 v,i v,i 100% 1 4' 1 32 

V,l <1>12' 0, v= , ... , , 1= , ... , . 
V,l 

The boundaries of design variables are presented in Table 5-4. One had to 
find the feasible solutions set D and the Pareto optimal set P of the solutions, 
and choose the most preferred solution on this set. In all, N = 512 trials were 
conducted in the six-dimensional parallelepiped. The criteria constraints corres­
ponded to the prototype performance criteria. 

Eighteen models, all of them Pareto optimal, have entered the feasible solutions 
set. Table 5-5 presents five of the models. 
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Table 5-3 

Design Performance 
Numbers of calculation tests (selected) 

variables criteria 2 7 18 27 32 

<1>1 5,971 6,346 5,751 6.001 5.876 
<1>2 0.000220 0.000228 0.000240 0.000196 0.000220 

OtI-Ot6 
<1>3 0.000450 0.000530 0.000540 0.000418 0.000345 
<1>4 0.001060 0.000970 0.001210 0.000731 0.000656 

<1>1 5,971 6,346 5,751 6,001 5,876 
<1>2 0.000215 0.000230 0.000240 0.000196 0.000220 

OtI-OtI2 
<1>3 0.000459 0.000545 0.000580 0.000416 0.000345 
<1>4 0.001072 0.000982 0.001230 0.000730 0.000650 

.1.<1>12 . .6 
1.1 0 0 0 0 0 

Error values .1.<1>12 • .6 
2.1 2.2 0.8 0 0 0 

.1.<1>12 •. 6 
V.I 

.1.<1>12 • .6 
3.1 1.9 2.7 6.8 0.5 0 

.1.<1>12 • .6 
4.1 1.1 1.2 1.6 0.1 1.0 

Table 5-4 

Design Designation Lower Upper 
variables Oti boundary boundary 

Masses of two bed portions 
M 3(t) 1.5 2.0 
Mit) 1.6 2.1 

Supports stiffness 
K3(kgf/mm) 20,000 40,000 
K4(kgf/mm) 30,000 60,000 

Stiffness characteristics of ~-3 (kgf/mm) 15,000 40,000 
the joint 2-3 interference (mm) 0.003 0.005 

We see that all the errors proved to be below the lO%-level specified by the 
designer, a<l>~~·6:51O%. Hence, the feasible solutions found in the six-dimen­
sional space of design variables have been obtained with a specified accuracy. 

Solution oP has been preferred to all the rest. Tables 5-6 and 5-7 present the 
values of the criteria and design variables for both the optimal solution and the 
prototype. 

For the optimal solution, the performance criteria of the machine tool structure 
exceeded the corresponding prototype criteria considerably: by 422 kg in the 
consumption of metal, by 18.46% in the static compliance, by a factor of 2.96 
in vibration stability, and by a factor of 1.72 in the dynamic compliance of the 
structure within the cutting zone. 

The analysis of the dynamic characteristics of the structure with the design 
variables corresponding to the optimal solution «17, has shown that the most 
vibroactive is the frequency range 75-85 Hz. 
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Table 5-5 

Design Performance 
Numbers of feasible models (selected) 

variables criteria 

<1>1 
<1>2 

a 1--««> 
<1>3 
<1>4 

<1>1 
<1>2 

al-al2 
<1>3 
<1>4 

d<l>12 .. 6 
1.1 

Error values d<l>12 .. 6 
2.1 

d<l>12 .. 6 
V.I 

d<l>12.,6 
3.1 

d<l>12.,6 
4.1 

Models 

Mode117 
Intial solution (a prototype) 

17 20 

5,752 5,627 
0.000190 0.000207 
0.000150 0.000 150 
0.000695 0.000877 

5,752 5,627 
0.000202 0.000210 
0.000170 0.000163 
0.000642 0.000910 

0 0 
5.4 1.4 
8.0 7.9 
8.2 3.6 

Table 5-6 

5.752 
6.174 

0.000190 
0.000233 

Table 5-7 

66 260 

5,807 5,598 
0.000199 0.000206 
0.000216 0.000240 
0.000691 0.000766 

5,807 5,598 
0.000198 0.000198 
0.000230 0.000259 
0.000668 0.000801 

0 0 
0.5 4.0 
6.0 7.3 
3.4 4.3 

Criteria 

0.000153 
0.000450 

Design variables 

Models 

Model 17 1.766 1.616 384400 
Intial solution (a prototype) 1. 800 2.000 20000 

Conclusions 

439400 
30000 

39220 
16000 

422 

6,082 
0.000193 
0.000228 
0.000733 

6,082 
0.000184 
0.000239 
0.000749 

0 
4.8 
4.2 
2.1 

0.000695 
0.001200 

0.0045 
0.0035 

The most vibroactive elements of the dynamic model of the cylindrical grinding 
machine under consideration have been revealed. The significant design variables 
were found, thus allowing reduction in the design-variable space dimensionality 
for solving the optimization problem. In tum, this permitted both finding the 
optimal design variables, which ensure the best values of the structure perfor­
mance criteria as compared with the prototype, and reduction in the time needed 
to solve the optimization problem. 
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5-4. Weakly Coupled Oscillatory Systems 

In this section, we present an approach that can be used both for determining 
the sensitivity of the criteria with respect to parameters of systems and for 
decoupling the systems (Banach 1988). When using this approach, we seek the 
parameters responsible for weak interaction between subsystems. Such parame­
ters can be omitted, and then we obtain the system whose order is less than the 
order of the original system. Note that, provided certain conditions are fulfilled, 
the difference between the solution of the reduced-order system and the original 
system does not exceed a prescribed quantity E, and in many cases we can 
guarantee sufficient proximity between the criteria values of the original and 
modified systems. 

The Method of Finding Weak Couplings 

The equations of a complex system that consists of a number of subsystems can 
be written in the form Dx=O, where D is a matrix of symmetric block-type 
structure whose blocks have the form Kij- AMij: 

D=K-AM=[Kij-AMijJ. i,j=l,m. (5-24) 

Here, K is the system stiffness matrix whose elements are kij ; M is the inertia 
matrix; diagonal blocks Ku and Mu are the stiffness and inertia matrices of the 
ith subsystem; off-diagonal blocks Kij and Mij describe the stiffness and inertia 
coupling between the ith and jth subsystems; m is the number of the subsystems. 

Let us call a subsystem, which is obtained after rigidly fixing the remaining 
m-l subsystems, a partial subsystem. Then it is evident that each diagonal block 
of the matrix D describes a certain partial subsystem, whereas off-diagonal blocks 
reflect the interaction between subsystems. 

Suppose now that we know the natural frequency spectrum and natural 
oscillation shapes for each of the partial subsystems. Then for each of the 
subsystems, the following matrices can be formed: the diagonal matrix 
Ai=diag [Af] , p= 1 ,ni, consisting of the natural frequencies of the ith subsystem, 
and the matrix «Ili whose columns «Il~ represent the shapes of oscillations of the 
ith subsystem (ni is the order of the ith subsystem.) 

Let us find the conditions under which system (5-24) is weakly coupled. Let 
us form the block-diagonal matrix «Ilo consisting of blocks «Ili' and diagonal 
matrix Ao consisting of the blocks Ai. It is evident, that these matrices describe 
the subsystems that are not coupled with each other. 

Let us premultiply the matrix D (see 5-24)) by «Ilb and postmultiply by «Ilo 
(the superscript T marks the transposed matrix). Then we obtain the symmetric 
block matrix 

(5-25) 
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Since 4li describes the natural oscillation shapes of the ith subsystem, the 
blocks of matrix (5-25) arranged on the main diagonal have the diagonal form. 
Let us introduce the following notation: 

4lfM ii41i=diag [J..Lf]=fl.i 

4lfKii41 i = diag [ref] = rei 

ref=~f J..Lf 

(5-26) 

(5-27) 

(5-28) 

Taking into account (5-26)-(5-28) we can represent the diagonal blocks of (5-
25) as follows: 

(5-29) 

In order for matrix D* to describe weakly coupled subsystems, it is necessary 
to represent it as a matrix containing a small parameter e~l at off-diagonal 
blocks, that is (taking into account (5-29)) 

D*=diag [rei-~fl.i]+eB, 

(5-30) 

Then, following the perturbation theory (Kato 1966) we can represent the 
solution of the eigenvalue problem for matrix (5-30) as series expansions in 
powers of e: 

A=Ao+eA1A +e2 A2A + ... , 
4l=41o+e41oS+e241oT+ .. . 

(5-31) 

Here Ao and 4lo are the previously defined matrices representing the natural 
frequencies and shapes of natural oscillations of partial subsystems, and the matrix 
coefficients of e describe correcting terms of the first and higher approximations; S 
is the matrix of spectral coupling coefficients Sf/ (see (5-37) below); and T 
characterizes second-order corrections to the eigenvectors. Some issues regarding 
the convergence of series like (5-31) are considered in (Kato (1966) and Dol'berg 
and Jasnitskaya (1973). 

Matrix (5-25) can be reduced to the form (5-30) by different ways, and 
depending on this, we can obtain different types of weak couplings. In Banach 
and Perminov (1972), it is shown that the reduction can be done by premultiplying 
and postmultiplying matrix (5-25) by the diagonal matrix N=diag [(ref)1I2]. This 
results in the matrix D**=ND*N whose diagonal elements are given by 
l-~J..Lf/ref, and off-diagonal blocks Otij consist of the elements 
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(5-32) 

Taking into account (5-28) we can rewrite (5-32) as follows: 

aP.S= [ .... pT(K.- AM .. )cJ>~]()l A~)-l!2 (1IP.1I.~)-l!2 
IJ .... 1 IJ IJ J I J ..-I ..... J (5-33) 

Weak Energy Coupling 

Let us estimate the values of afl. Note first, that lam < 1, by virtue of positive 
definiteness of the matrices K and M. 

The necessary condition of the system being weakly coupled is given by 

(5-34) 

Indeed, if (5-34) holds, the matrix D** can be represented in the form (5-30), 
D** = Do + EDIo which describes weakly coupled systems. 

Inequality (5-34) means that for pth and sth oscillations modes, the work of 
the elastic forces acting between the ith and jth subsystems is much less than the 
geometric mean of the potential energies ofthe ith (Vii) and jth (Vj) subsystems: 

vp'S~ (Vp.V-~)l!2 
IJ II JJ (5-35) 

In case there exist inertia elements Mij in the coupling matrix, we can obtain a 
similar condition for the kinetic energy: 

W P.S ~ (wp.W.~)l!2 
IJ II JJ (5-36) 

Therefore, conditions (5-35) and (5-36) can be called conditions of weak energy 
coupling. Superscripts p and s indicate the respective numbers of oscillation 
modes. 

As mentioned before, if (5-34) holds, the matrix D* has the form (5-30) that 
is, K=Ko+EB, M=Mo+EL, where blocks of the matrix are given by Bii=O, 
Bjj=cJ>fKjjcJ>j' Analogously, we can obtain blocks of the matrix L. 

One can seek the solution of the eigenvalue problem for matrix (5-25) in the 
form of series (5-31). Using the procedure given in Banach and Perminov (1972) 
we obtain first-order corrections (in the case of simple roots) for natural frequen­
cies and oscillation shapes of the ith subsystem taking into account its coupling 
with the jth subsystem: 

(5-37) 

If the ith subsystem is coupled with several subsystems, the resultant correction 
is found by adding corrections (5-37). 
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Weak Spectral Coupling 

Analyzing the first-order and higher-order corrections we see that these correc­
tions contain the matrix S=[S~y], given by (5-37), as a multiplier. Consequently, 
the values of Sfi determine the radius and rate of convergence of series (5-31). 
If Isvsl> 1, then the series diverge. 

Suppose, condition (5-34) of weak energy coupling is satisfied. However, as 
it follows from (5-34) and (5-37), in case 11-(AJiAf)l<e the inequality 
ls{}sl>1 implying the divergence of series in (5-31) can hold. This inequality 
means that different subsystems have close natural frequencies. In this case, as 
in Banakh and Perminov (1972), the system can tum out to be strongly coupled. 
It is evident that the satisfaction of the condition 

(5-38) 

is sufficient for the convergence of series (5-31). If the condition (5-38) is 
satisfied, we say that there is weak spectral coupling between the ith and jth 
subsystems. 

The condition of weak spectral coupling can be fulfilled in the following two 
cases: (1) When there is weak energy coupling between subsystems (la{jsl<e), 
and there are no close frequencies in the subsystems, that is, 11-(AJ/Af)l~ 1; 
and (2) when the amount off resonance between subsystems is large, that is, 
11-(AJiAf)I;::: lie. In the latter case, the weak energy coupling between subsystems 
is not necessary. This means weak coupling between the subsystems operating 
in different frequency ranges. Note that the condition of weak energy coupling 
alone is applicable only if the subsystems do not contain close frequencies. 
Otherwise, one can also check the convergence condition, Ism < 1. 

Separation o/Weakly Coupled Subsystems in the General System 

The decomposition of the system taking account of weak energy and spectral 
coupling allows us to reduce considerably the order of the examined system. If 
the solutions of eigenfrequency problems for the subsystems are known, one can 
construct the matrix fY.ij and estimate the degree of coupling between oscillation 
modes. 

For the majority of practical problems, the order of the subsystems is very 
large (103-104), and it is difficult to obtain all necessary information about 
frequencies and shapes of oscillations. Therefore, to use effectively the weakness 
of couplings, we are to be able to estimate the quantities a{js approximately, 
without having a complete solution of the eigenvalue problems. Let us prove an 
important property of the energy couplings, namely that maximal matrix elements 
a{js decrease with mode numbers (p and s) increasing and, under certain condi­
tions, remain less than a prescribed number e, i.e., 
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11:>:> nn. --1 - -1 -maxaij - ... -maxaifl, P- ,ni, s= ,nj. (5-39) 

For the proof, we simplify expressions (5-32) and (5-33) by using vector and 
matrix norms (Parlett 1980). Then the existence condition for weak energy 
coupling takes the form 

(5-40) 

where Q is determined from the orthogonality condition for the oscillation shapes: 
cl»fQcI»i = E. In particular, for rather widespread orthogonality conditions, with 
respect to energy (112 A,4>fMiicl»i = E) and with respect to the inertia matrix 
(cI»fMiicl»i = E), expression (5-40) takes the form 

laP.SI< II M(:-1I2)TK··M::- 1I2 II (AP AS )-112 
'J- II 'J1J '1 (5-41) 

Numerators in (5-40) and (5-41) do not depend on the solution and are determined 
by the elements of original matrices K and M. Hence, the change of aff with 
numbers P and s increasing is determined by the values of Af and A], from where 
relationships (5-39) follow immediately. 

Now, we prove the second part of the statement. Let us choose the partition 
of the system into subsystems connected by weak energy couplings so that the 
inequalities 

(5-42) 

hold. Then la{jsl<E for P>PI, S>SI. This completes the proof. 
Condition (5-42) used for estimating max aff does not require the knowledge 

of higher frequencies and shapes of oscillations. Besides, from (5-42), we can 
determine frequencies Afl in order to provide the calculation accuracy equal to E. 

Thus, we can propose the following way for seeking weak energy couplings 
in a complex system. First, the system is partitioned into subsystems. Then, 
after having obtained natural frequencies and oscillation shapes for decoupled 
subsystems, we find from (5-42) the numbers PI and SI of the oscillation modes 
in the ith and jth subsystems connected by the weak energy coupling. 

Hence, relationship (5-42) enables us to estimate the strength of energy cou­
plings and is the existence criterion for weak energy couplings. In addition, this 
relationship determines the way of partitioning the system into weakly coupled 
subsystems. 
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Example (Banach 1988) 

Consider the use of concepts of energy and spectral couplings for the analysis 
of free oscillations of a rotor mounted on an elastic foundation (see Fig. 5-3). 

The foundation is considered to be consisting of beams with constant square­
shaped cross section, the length of the square side being equal to 0.43 m. The 
lengths of longitudinal and transverse beams of the foundation are equal to 
L J =5 m and L2=3 m, respectively. The rotor is modeled as a beam of circular 
cross section. The length of the rotor is Lr=5 m, and the radius of its cross 
section is rr=0.6 m. The finite element model of the system has been studied 
within the frequency range 0-100 Hz. The model has 12 elements. Each of the 
elements has six degrees of freedom, and hence, the total number of degrees of 
freedom is 72. The finite elements are numbered as shown in Figure 5-3. 

The stiffness matrix of the system is given by 

z 
y 

1 

Figure 5-3 Rotor on an elastic foundation. 



www.manaraa.com

152 / Multicriteria Optimization and Engineering 

where Kf and Kr are stiffness matrices of the foundation and rotor, respectively; 
and Kfr is the stiffness matrix of elastic elements connecting the rotor and 
foundation. The 42x30-matrix Kfr has a block structure, with the blocks Kj!. 
(i=I, ... ,7;j=8, ... ,12). Only the 6x6-blocks K.f8=K~1O=K},:12 are not equal 
to zero, nonzero elements of these blocks are kll =k22=k33= -103N/m, 
k1S = - k24 = - 34. 3·1 03N/m. The first four natural frequencies for decoupled sub­
systems are 7.65, 8.36, 21.86, 39.8 Hz for the rotor, and 22.2, 25.76, 29.0, 
79.8 Hz for the foundation. The oscillation shapes corresponding to these fre­
quencies are eIl~ and ell} (i = 1 , ... ,4). Having calculated the matrix 
D*=eIlJ (K-AM)eIlro according to (5-33), we find max avs=ur=O. 11 , max 
S~s=0.04 (J.Li=J.Lj=50). Hence, within the chosen frequency range, the system 
is weakly coupled, both in terms of energy and spectral coupling. For unknown 
oscillation modes withp, s>4, we can estimate Uij by using (5-41). In the case in 
question, when Ai, Aj>21T·80Hz, we find that IUiA :5 II M f - 1I2 Kfr M;:11211 
·(AiAjJ.LiJ.Lj)-1I2 :50.2. Taking into account (5-42) we conclude that the system 
is weakly coupled (in terms of energy coupling) within the whole frequency 
range and, hence, natural frequencies of the coupled system are close to the 
corresponding frequencies of the isolated subsystems. The calculations of natural 
frequencies confirm this conclusion. 

The natural frequencies of the coupled system are 7.13, 7.96, 20.55, 22.8, 
26.1,29.4,38.5, and 80.7 Hz. 

The corrections for these frequencies do not exceed 6%, the frequencies of 
both the rotor and foundation sliding apart (the lesser frequencies decrease while 
the greater ones increase, approximately by the same amount) so that 

LAif + LAir = LAi (it follows from the Vi'ete theorem). The dynamic character­

istics of subsystems obtained after partitioning the original system due to weak 
couplings are close to the respective characteristics of the original system. 
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Examples of Multicriteria Optimization of 
Machines and Other Complex Systems 

At present, the parameter space investigation (PSI) method is widely used in 
various areas, such as pharmacy, petrophysics, nuclear physics, chemistry of 
polymers, geophysics, and nonlinear optics. However, of primary importance 
is its use in shipbuilding, machine tools, aircraft, railway cars, automobiles 
manufacture, etc. In this chapter we discuss some examples of effective applica­
tions of the method. 

6-1. Vibration Machines Optimization 

Resonant Table Vibrator Design (Sobol' and Statnikov 1981; 
Kryukov et al. 1980) 

Resonant vibration machines are used in various industrial branches. They are 
created on the basis of nonlinear elastic systems ensuring their technological 
stability and allowing optimization of the laws of working parts vibration. Synthe­
sis of vibration machines is a rather complicated problem, generally reducible 
to determination of the optimal dynamic structure and selection of the nonlinear 
system and drive parameters so as periodic motions of the working parts satisfy 
both the specifications and a number of design constraints in the best possible 
way. 

Initial data 

As the prototype of the vibration machine we have chosen a table vibrator 
used for moulding reinforced concrete products, whose load-carrying capacity 
is 8 t (Fig. 6-1). Its vibration is described by the following system of nonlinear 
differential equations: 

153 
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Figure 6-1 Schematic of an asymmetric resonant table vibrator. 

mixi +fix)x+ /-Lk ~I + P(x) + k¥1 = 
kop (sinv t+ /-Lvcosvt) 

m2x2-fix)x+/-Lk2X2-P(X) + k2X2= 
-kop (sinv t+ /-Lvcosvt) , 

(6-1) 

where XI andx2 are the displacements of masses mo and m2 respectively; X=XI- X2, 

P(x)=(kl +ko)x+<T(x)kB(x+e), fix) = /-LI[kl +ko+<T(x)kB], <T(x)=O for x2=e, and 
<T(x)=1 for x<e. The physical meaning of the quantities appearing in (6-1) 
follows. 

Design variables 

There are 10 design variables: stiffness of the driver elastic links, <ll =ko 
(measured in kN/cm); stiffness of the main linear elastic links, <l2=kl (kN/cm); 
the buffers stiffness, <l3 =kB (kN/cm); stiffness of shock absorbers of the supports 
mounted under the frame, <l4=k2 (kN/cm); stiffness of shock absorbers of the 
supports mounted under the working part, <l5=k3 (kN/cm); drive eccentricity, 
<l6=P (cm); mass of the working part, <l7=mO (t); balancing frame mass, <lg=m2 

(t); initial clearance in buffers in the absence of technological loads, <l9=ein 
(cm); operational frequency, <llO=V(S-I). 

The other quantities 

The remaining quantities are: payload mass, mp; coefficient of the payload 
mass addition, km; reduced mass of the working part of the system, m 1= mo + kmmp ; 

coefficient of internal resistance of the rubber elastic links, /-L; reduced resistance 
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coefficient, k",; reduced coefficient of internal resistance forces, IJ.I = lJ.+k",mp ; 

and buffers clearance, e. 
The request for proposal specifies the product mass (2 t::5mp::58 t), the opera­

tional frequency range (50 s-l::5v::5100 S-I), and the maximum upward and 
downward accelerations of the working part Wlu and WId. Operational modes 
must correspond to the ascending branch of the frequency characteristic, that is, 
must belong to the subresonance region. 

Approximate periodic solutions to system (6-1) were found using the Krylov­
Bogolyubov method. 

The following functional dependences are introduced: 

h(a)=Wlu,h(a)=Wld,h(a)=kop, 
14(a)=mo+M-(kl +k3) Q(gk,)-I, 

Is(a)=mO+m2+M -(k2+k3 )Q(gk,)-I, 
k2Mg-kop(k2+k3) 

16(a) - e· 
klk2+klk3+k2k3 In' 

h(a)=v-w(a) 

where M is the maximum load (equal to 8 t); k' is the stiffness of a rubber shock 
absorber (measured in kN/cm); Q is the limiting load per shock absorber (kN); 
and w(a) is the linearized system's natural frequency (s-I). 

Functionsh(a),f2(a), andh(a) depend on the solution to system (6-1), while 
h(a)-/6(a) are expressed directly via Clt. ... ,CllO. 

The functional constraints are specified by the inequalities 

(6-2) 

and 

/.;(a)::50, j=4, ... ,7. (6-3) 

The first two constraints ensure that the vibration of the working part corre­
sponds to the design requirements; the third constraint limits the disturbing force; 
the fourth and the fifth ones limit the loads acting on the rubber shock absorbers; 
the sixth constraint is related to the load on the elastic suspension; and the 
seventh one ensures that the operational modes under consideration stay within 
the subresonance region. 

The constraints imposed on It. h, and h, are not "rigid," and may be varied 
depending on the specific features of manufacture and the requirements to the 
reinforced concrete products. Conversely, the constraints imposed on/4-h cannot 
be violated. 
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Performance criteria 

It is proposed to estimate the quality of the table vibrator using six criteria, 
all of which should be minimized. The first criterion (the mass of the machine) 
<1>1 =a7+ag. The other five criteria are expressed through the solution to system 
(6-1), which depends on the product mass mp. In line with the technique proposed 
in Kryukov et al. (1980), system (6-1) was solved four times for mp=2, 4, 6, 
and 8 t. The max and min symbols employed in the subsequent formulas indicate 
that either the maximum or the minimum values obtained in the four series of 
calculations are used. Thus, we have the following performance criteria: 

• The mass of the machine <l>1(<<)=mO+m2. 

• The asymmetry of the law of the working part vibration, <1>2(<<) 
=max(Wlu1wld)· 

• The dynamic force acting in the drive, <l>3(<<)=max(koao), where ao is 
the elastic deformation of driving links. 

• The dynamic loads acting on the foundation, <1>4(<<) = max II k2a21-lklalll , 
where al and a2 are the vibration amplitUdes of the working part and the 
balancing frame, respectively. 

• The stability characteristics of the upward and downward accelerations, 
<l>s(<<)=(maxwlulminwlu)-1 and <l>6(<<)=(maxwliminwld)-1 respec­
tively. 

Problem 1: Analysis of the Potential for Modernizing the 
Initial Vibration Machine 

We have to answer the question of whether comparatively small variations in 
the parameters of the existing vibration machine allow improvement without a 
cardinal change in the design. 

To solve the problem the designer has indicated the boundaries of the design 
variable variation presented in Table 6-1. These boundaries define a nine-dimen­
sional parallelepiped n l whose center coincides with point «I representing the 
existing machine parameters (see Table 6-1). The criteria constraints were set 
equal to the values of the criteria at point «I, that is, <l>t*=<I>v(<<I) for any 
v=I, ... ,6. 

Trial calculation and correction of the problem formulation 

In parallelepiped nb N=256 trials were conducted, subject to functional 
constraints (6-2) and (6-3). The number of models satisfying the functional 
constraints proved to be equal to N' =24, so that -y=0.093. Since the first three 
functional constraints were not rigid, functional dependences II , h, and h were 
converted into pseudocriteria. Thus, we have 
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Table 6-1 

Problem 1 Problem 2 

o.j 0.'1' 
} 0.1 

} 
0.** 

} 0.248 
1 0.475 

1 
0.'1' 

} 0.** 
} 0.116 

1 0.12 
1 

1 44 48 52 44.96 50.98 20 100 31.79 48.78 
2 92 96 100 99.03 99.42 30 150 59.04 83.12 
3 1,400 1,600 1,800 1,758 1,490 400 3,000 1,449 2,396 
4 20 25 30 22.07 20.09 20 60 20.42 20.00 
5 20 25 30 29.49 26.54 20 60 48.64 46.87 
6 0.5 0.7 0.9 0.848 0.830 0.5 2.0 0.971 1.065 
7 3. 3 3 3 3 3 7 3 3 
8 3 5 7 4.02 5.43 3 7 3 3 
9 0.0 0.2 0.4 0.398 0.110 -0.3 1.5 0.438 0.637 

10 94 97 100 95.10 94.20 50 100 91.48 90.63 

<1>7 =/3 (a) , <1>8 =!I(a) , <l>9=h(a). (6-4) 

The second trial calculation 

Again N=256 trials were conducted, 33 of which were included in the test 
tables. Models a 40 and a 248 proved to be advantageous, since they surpass 
a l in several important design variables, and this compensates for a certain 
deterioration in the rest criteria. Both models found their way into the test table 
solely due to transformation of functional dependences into pseudocriteria (6-
4). The designer has decided that model a 248 was the most promising one (see 
Table 6-2). 

Subsequently, the designer has tried to minimize criterion <1>1. 

Continuation of the calculations 

The trials were continued, subject to constraints (6-3), within the same parallel­
epiped III for N= 1,024. As a result, 108 models entered region G. At this stage, 
no criteria constraints were imposed. From among the 108 models included in 
the test tables, the Pareto optimal ones were selected. Taking into account all 
six criteria, there proved to be 59 such models, model a l included. Hence, the 
prototype (model a l ) could not be improved in all six criteria simultaneously. 
In a certain sense, this conclusion should be considered natural because the 
design subjected to analysis was very good. Subsequently, the designer has 
considered seven sets of criteria constraints of which three are described here. 

The first designer-computer dialogue. Table 6-2 presents the trial data for 
all the performance criteria with the exclusion of pseudocriteria. The criteria 
constraints marked by horizontal lines define the feasible solutions set D con­
taining only one solution represented by model a 1. 
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Table 6-2 

248 7.02 445 0.233 319 28.25 475 3.70 588 0.047 214 0.051 
353 7.04 475 0.241 248 28.34 1,022 3.74 418 0.106 295 0.120 
132 7.17 141 0.241 794 28.46 957 4.10 910 0.133 853 0.120 
673 7.30 40 0.241 47 28.94 593 4.15 863 0.144 910 0.122 
47 7.31 78 0.242 935 29.38 253 4.37 214 0.155 231 0.130 

528 7.32 831 0.242 176 29.52 768 4.52 134 0.170 807 0.163 
905 7.37 183 0.243 498 29.59 143 4.55 853 0.176 819 0.177 
733 7.39 667 0.243 13 30.15 643 4.62 295 0.180 445 0.183 
379 7.41 925 0.243 40 30.34 116 4.66 637 0.197 40 0.186 
836 7.42 433 0.243 528 30.62 204 4.77 947 0.214 116 0.188 
141 7.42 655 0.244 922 30.82 588 4.91 347 0.233 637 0.214 
690 7.43 396 0.245 475 30.94 552 4.93 396 0.236 588 0.217 
620 7.47 319 0.246 905 31.62 176 5.16 203 0.243 406 0.221 
421 7.49 913 0.246 682 31.68 733 5.20 231 0.256 475 0.227 
922 7.50 819 0.248 141 31.69 667 5.27 925 0.256 790 0.243 
498 7.52 682 0.248 819 31.70 661 5.42 406 0.256 655 0.245 
787 7.57 794 0.248 31.72 379 5.43 116 0.271 362 0.260 

218 7.58 498 0.249 1,022 31.83 224 5.54 819 0.281 203 0.266 
78 7.59 176 0.250 831 32.00 368 5.63 619 0.283 36 0.266 

181 7.61 935 0.250 433 32.41 619 5.68 153 0.294 619 0.274 
552 7.63 619 0.250 421 32.54 406 5.69 913 0.298 78 0.279 
990 7.65 134 0.252 379 32.80 433 5.70 648 0.298 224 0.281 
319 7.70 922 0.252 445 33.62 794 5.77 807 0.303 149 0.282 
768 
336 
879 

13 
831 

605 
153 
40 

293 
794 
643 
433 

7.70 615 0.252 181 33.95 682 
7.73 879 0.252 368 34.77 533 
7.73 115 0.255 353 34.79 13 
7.75 0.256 218 35.01 408 
7.76 243 0.256 787 35.06 874 

7.79 600 0.258 874 35.18 498 
7.80 996 0.260 643 35.34 859 
7.81 143 0.261 768 35.64 637 
7.82 103 0.261 688 35.70 913 
7.82 643 0.262 836 35.75 922 
7.86 368 
7.87 874 

0.262 341 
0.262 847 

36.43 
36.43 

293 
787 

5.78 224 0.303 667 0.285 
5.81 40 0.305 48 0.286 
5.81 445 0.305 628 0.286 
5.87 628 0.310 925 0.287 
5.89 183 0.316 418 0.294 

5.92 520 0.322 706 0.304 
5.96 996 0.335. 615 0.306 
5.96 862 0.336 847 0.313 
5.97 78 0.342 1,022 0.313 
6.03 115 0.343 347 0.315 
6.13 48 
6.18 1,022 

0.346 513 
0.352 336 

0.324 
0.332 

continued 

The second designer-computer dialogue. Having decided to make conces­
sions in the less important criteria <1>5 and <1>6, the designer chose <I>~* = I and 
<I>~*= 1, while the first four criteria remained unaltered: <l>t* = <l>Jal) , 1 ~v~4. 

In this case three models, a\ a 794 , and a 922 , were included in the feasible 
solutions set. The latter two solutions were assumed to be approximately 
equivalent, since the best value of <l>1(a922) was balanced by the best values 
of <l>3(a794) and <l>4(a794). It is noteworthy that model a l proved to be improv­
able in the four most important criteria. 
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910 
952 

192 
767 
619 
418 
925 

819 
593 
149 
682 
408 
935 

36 
790 

214 
475 
996 
637 

35 
183 
648 
807 

347 
863 
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Table 6-2 (Continued) 

<1»(<<i) <l>2(<<i) <l>3(<<i) <l>i«i) <l>5(<<i) <l>6(<<i) 

7.87 13 0.262 253 36.62 879 6.25 667 0.354 880 0.339 
7.93 163 0.263 132 36.67 248 6.36 475 0.357 0.359 

7.95 661 0.263 879 36.69 935 6.37 86 0.366 115 0.360 
7.96 990 0.263 224 37.06 615 6.53 790 0.374 408 0.380 
7.97 421 0.263 192 37.18 295 6.62 149 0.375 688 0.383 
7.99 853 0.264 103 38.11 243 6.67 513 0.385 668 0.390 
8.00 347 0.264 655 38.20 6.70 615 0.385 85 0.393 

8.00 293 0.265 143 38.44 690 6.82 706 0.386 600 0.402 

8.01 204 0.265 78 38.85 319 6.82 655 0.395 957 0.431 
8.04 48 0.265 243 39.08 905 6.90 336 0.399 103 0.432 
8.05 224 0.266 185 39.15 78 7.01 847 0.400 368 0.451 
8.05 149 0.266 733 39.27 218 7.03 600 0.417 293 0.463 
8.05 203 0.266 406 39.57 47 7.08 85 0.420 948 0.474 
8.06 787 0.267 990 39.63 790 7.16 0.421 183 0.481 

8.06 520 0.267 513 39.82 853 7.17 668 0.439 836 0.485 
8.07 253 0.268 593 40.05 48 7.17 880 0.441 253 0.486 

8.33 673 0.276 605 45.84 421 8.51 831 0.649 243 0.626 
8.34 231 0.276 948 45.91 353 8.55 767 0.687 947 0.660 
8.34 690 0.276 790 46.01 528 8.63 859 0.687 176 0.665 
8.35 768 0.277 35 46.30 990 8.71 421 0.696 682 0.719 

8.56 767 0.282 153 50.85 362 9.44 353 0.844 528 0.891 
8.61 248 0.283 859 52.01 153 9.59 218 0.849 768 0.894 
8.61 593 0.283 418 54.35 170 9.59 733 0.881 733 0.897 
8.64 952 0.284 957 54.73 880 9.64 787 0.886 913 0.903 

8.98 605 0.305 231 64.18 35 11.82 13 1.118 498 1.164 
9.04 620 0.313 947 70.62 600 12.51 498 1.143 13 1.222 

The third designer-computer dialogue. The designer has decided to look for 
the models that are somewhat worse than a 1 in one of the first four criteria, 
being at the same time notably better in all other criteria. To do this he has 
chosen the constraints 

<l>t*=<I>I(a996)=8.34, <I>!*=<I>2(a836)=O.291, 

<I>~*=<I>3(a445)=33.62, <l>t*=<I>4(a847)=7.61. 

As defined earlier, <I>!* = 1 and <I>~* = 1. 
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The feasible solutions set contain 15 models of which 12 are Pareto optimal. 
Of the latter, the designer has preferred models a 248 , a 475 , and a922. 

The most intriguing proved to be model a 475 , which is somewhat worse than 
a l in criterion <I>\, but surpasses it in criteria <1>2-<1>6. The value of <l>4(a475 ) is 
minimal and much better than <l>4(a l ). The designer's ideas related to model 
a 475 are summarized in the conclusions. 

Subsequent designer-computer dialogues did not result in substantial improve­
ments. Attempts to improve model a 475 by means of a local search in its neighbor­
hood proved to be fruitless. 

The issue of model a 475 stability also was analyzed. In doing so it was supposed 
that the model is stable if the parallelepiped whose center coincides with point 
a 475 and edges correspond to technological tolerances of the design variables 
does not contain points with corresponding performance criteria substantially 
differing from <l>v(a475). Within this parallelepiped, 64 trials were conducted in 
which criteria proved to be close to <l>v(a475). 

Analysis of the criteria relations 

The correlation coefficients of the criteria were calculated in region G con­
taining 108 trial points. The results presented in Table 6-3 show that of the six 
criteria only <1>5 and <1>6 are strongly interdependent, the correlation coefficient 
r5,6 being equal to 0.89. The analysis of the test tables has confirmed the conclu­
sion that the groups of the best (and worst) models with respect to both the 
performance criteria consist mostly of the same models. 

Table 6-3 

~ 2 3 4 5 6 

1 -0.14 0.60 0.00 -0.63 -0.56 
2 -0.14 1 0.24 0.05 0.17 0.14 
3 0.60 0.24 0.32 -0.64 -0.47 
4 0.00 0.05 0.32 1 -0.32 -0.24 
5 -0.63 0.17 -0.64 -0.32 0.89 
6 -0.56 0.14 -0.47 -0.24 0.89 

The results of solving Problem 1 can be summed up as follows. 

1. The prototype machine (model a l ) cannot be improved in all six criteria 
simultaneously. However, models a 794 and a922 surpass it in four of 
the most important criteria, <1>1-<1>4. 

2. An advantageous model, a 248 , has been found, which is optimal in 
criterion <1>1. Its mass is less than that of model a l by approximately 
It, and the rest of the criteria are acceptable in the designer's opinion. 
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3. Model «475 optimal in criterion <1>4, was found. Though its mass is larger 
than that of the prototype by 0.34 t, it surpasses the latter in the remaining 
five criteria. For the newly found model the dynamic load on the founda­
tion (criterion <1>4) is almost twice as small as for the prototype! Since 
the newly designed plants, and the more so, advanced plants ofthe future, 
are supposed to be multistory buildings with vibrator tables installed not 
only on the ground floor but on the upper floors too, a reduction in the 
foundation load (criterion <1>4) acquires major significance. 

At this point we would like to stress the usefulness of multicriteria 
analysis once again: At the start of the analysis criterion <1>1 was assumed 
to be undoubtedly one of the most important criteria. However, it is 
absolutely clear that within the framework of the single-criterion problem 
of the criterion <1>1 optimization we would fail to find the advantageous 
«475 solution. 

4. Generally, in the case of the previous design variable variations the 
possibilities of improving the prototype machine design are rather scarce. 

Problem 2: Predesign of the Minimal-Mass Machine 

It is necessary to improve criterion <1>1 (the machine mass) considerably, improv­
ing at the same time, if possible, the values of the rest criteria. Since, according 
to the previous analysis the problem is not solvable within parallelepiped II I, it 
was decided to widen the region of search drastically. 

Global analysis 

The designer has constructed a new parallelepiped II2 using design-variable 
constraints aj and aj* presented in Table 6-1. The limits of a7 and as in II2 
have been determined from the dynamic strength conditions, as in III. 

Under the initial functional constraints N=4,096 trials were conducted in II2, 

of which only N' = 100 trials were included into the test table. Hence, 
N'IN=0.025. The reduction (as compared with 'Y=0.093 in the case of the first 
problem) is quite natural, since the preceding search was carried out over a rather 
limited volume. 

Six designer-computer dialogues have been conducted, with the number of 
models entering the feasible solutions set varying from zero to 20. Upon analyzing 
all 100 models it was decided to continue analysis not in the whole of the 
parallelepiped, but in a certain portion of it. 

Local analysis 

The designer has selected the seven best models and constructed parallelepipeds 
centered in them. The local search was carried out within these parallelepipeds. 
Two best models were found, having minimum mass 6 t (<1>1 =6 t) and acceptable 
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values of all other criteria, namely, model «116 found in the neighborhood of 
model «1,452, and model «12 in the neighborhood of «2,406 (see Table 6-1). 

Conclusion 

The results of these calculations have been regarded by the designer as most 
promising. First, it was found that the mass of the machine can be reduced by 
2 t, with the forces acting in the drive and the dynamic loads on the foundation 
being reduced by 10% to 20% (models «116 and «12 in IIz). Second, it was shown 
that the reduction in the dynamic loads on the foundation may be accompanied by 
improvements in the rest of the criteria, if the machine mass is increased by less 
than 5% (model «475 in III). 

These results have stimulated further improvements in the designs of resonant 
table vibrators used for moulding reinforced concrete products. 

More Examples of Vibration Machine Optimization 

Both the degree of perfection of vibration machines and their correspondence to 
the state of the art depend on how well they comply with numerous, often 
conflicting, requirements, such as small material consumption combined with 
high reliability and operability of the machine, small overall dimensions, high 
strength, operational stability, high efficiency, and ecological safety. 

In Spivakov and Goncharevich (1983) the reader will find numerous interesting 
examples of multicriteria design of vibration-impact installations for handling ore, 
eccentric-drive vibration conveyers, double-screw crashers, and other vibration 
machines. 

6-2. Truck Frame Design 

As the major structure of a truck, a frame is subjected to the influences of both 
the road roughness and the units mounted on the truck itself. In tum, the properties 
of a frame strongly affect many significant characteristics of a truck, such as its 
controllability, smoothness of motion, vibration loads, stability, etc. Besides, 
the mass of a frame makes up a considerable portion of the overall mass of a 
truck. 

A frame is designed subject to conflicting requirements: One has to decrease 
its mass, enhancing at the same time its strength and ensuring the specified level 
of a number of operational characteristics (Velikhov et al. 1986). 

Here, the problem of designing an optimal truck frame is considered, formu­
lated as follows: It is necessary to design a frame whose mass is smaller than 
that of the prototype, and the strength properties are improved as compared with 
the latter. Besides, the stiffness characteristics of the optimal frame must be 
close to those of the prototype whose dynamic properties are sufficiently high. 
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Figure 6-2 Finite element model of a truck frame. 

Finite Element Model of a Truck Frame 

Figure 6-2 shows a model composed of platelike elements possessing both the 
membrane and the flexural stiffness. By using these elements one can take into 
account the effects of stiffened torsion in the joints of a frame and in the zones 
where the cross pieces are fastened to the side rail in the most natural way, and 
analyze the stressed state of the structure under study in sufficient detail. 

The adequacy of the model was confirmed by numerous bench and road tests. 
The calculated and experimental results were compared for the major loading 
modes resulting in torsion and bending in the vertical and horizontal planes. The 
loading modes were chosen taking into account the statistics of truck frame 
failures. The model allows estimating a stress-strained state taking into account 
the specific features of interaction of the frame's elements. IS It proved to be 
highly efficient in determining the dynamic characteristics of a truck. 

Optimization Criteria 

In line with the objective of the study, seven criteria incorporating three 
pseudocriteria and four performance criteria were formulated. The torsional stiff­
ness of a frame may be characterized by the overall twist angle <1>. Since we are 
exploring the departures of the stiffness design variables of a frame subjected 

15Later we had an opportunity to analyze a simplified model composed of beams. The comparison 
of the results calculated using the two models (as well as the comparison with experimental data) 
has shown that the beam model yields adequate results regarding displacements and stress distribu­
tions. The use of the beam model has allowed considerable reduction in time needed for conducting 
optimization calculation. 
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to optimization, from those of the prototype frame, the first pseudocriterion was 
represented in the form 

where <l>i is the ith test twist angle (in the case of the PSI method i = I, ... ,N), 
and <l>p is the prototype frame twist angle. The vertical-plane bending stiffness 
is characterized by the pseudocriterion 

'" _ i _ p .100% 
'¥2(o.)-(jmax, v imax, v)J,P 

max, v 

where f~, v and f!.ax, v are the maximum vertical-plane deflections for the ith 
test and the prototype frame, respectively. The horizontal-plane flexural rigidity 
of a frame was taken into account using the pseudocriterion 

where f~, H andf!.ax, H are the maximum horizontal-plane deflections for the 
ith test and the prototype frame respectively. 

The performance criterion <1>4(0.) representing the side rail mass is defined as 
a sum of the web and the upper and lower flanges masses; and q,s(o.) is the 
sheet thickness. The latter criterion is also a design variable. Besides, 

where max (J'tor and max (J'hb are the maximum torsional and horizontal-bending 
stresses, respectively. The torsional stress was normalized by the twist angle 5°, 
which is known to be the average twist angle in moving over a road. This was 
done by introducing the coefficient <l>5J<I>i where <1>5,=5°. 

Design Variables 

For solving the formulated problem, 21 design variables were chosen defining 
both the side rail geometry (see Fig. 6-3) and the cross piece rigidities (Table 
6-4). Of special importance is thickness D of a sheet used for manufacturing the 
side rail. This design variable determines the latter's mass as well as rigidity 
characteristics and stresses. The geometry of a side rail is defined by a set of 
design variables (see Fig. 6-3). By H, B, and L we denote the height, width, 
and length of the side rail portions, respectively. The frame stiffness characteris­
tics display a marked dependence on the torsional and vertical-bending stiffnesses 
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Figure 6-3 Side rail geometry (1 is a web; 2 is a flange). 

of cross pieces. Therefore, the latter were included into the set of design variables: 
IT; and IW; are cross-section moments of inertia corresponding to the torsional 
and the horizontal-plane stiffnesses of cross pieces, respectively. Here i= 1, ... ,5, 
since the frame under consideration incorporates five cross pieces. 

The boundaries of the design variables (the nj parallelepiped) were chosen 
taking the design and technological potential into account. 

Analysis in Parallelepiped ill 

The number of trials was N= I ,024. The large number of designer-computer 
dialogues has allowed detailed analysis of the results obtained for different criteria 
constraints, as well as detection of the design variations leading to a reduction 
in the mass and improvements in the strength properties of the truck frame. The 
results of the dialogues were used for compiling a test table representing the 
most noteworthy models. Table 6-5 is a fragment of the latter. The first row in 
Table 6-5 corresponds to the prototype, the values of its performance criteria 
being given. The first column presents the 15 best models: 836, 596, ... , 824. 
The next three columns are occupied by pseudocriteria <l>j, <1>2, and <1>3 (the "+" 
and" -" are the signs of deviations from the values corresponding to the prototype 
frame). Finally, the performance criteria <1>4-<1>7 are presented. We see that for 
the prototype frame the sheet thickness is <1>5=6.35 mm, and the side rail mass 
<1>4=104 kg. In Tables 6-5 and 6-6 <1>5 corresponds to the rounded values of the 
sheet thickness. 

Since in constructing the Pareto optimal set pseudocriteria were ignored, each 
dialogue resulted in construction of a feasible solutions set and determination of 
the Pareto optimal models in the criteria <1>4-<1>7. 
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Table 6-4 

Design 
variables Design Lower Upper Optimal 
numbers variables boundary boundary Prototype model 

D (mm) 5 10 6.35 5.5 
2 HI (cm) 11.4 15.4 13.4 14 
3 BI (cm) 5.4 7.4 5.7 5.6 
4 L8 (cm) 185.6 205.6 185.6 196.5 
5 H8 (cm) 22.5 26.5 24 24.6 
6 B8 (cm) 5.4 9.4 7.7 7.9 
7 LI2 (cm) 354.1 384.1 374.1 362.5 
8 H21 (cm) 15.4 19.4 17.4 16.7 
9 B21 (cm) 5.4 7.4 5.7 6.8 

10 Ls (cm) 100.6 120.6 1l0.6 106.4 
II LI6 (cm) 454.6 494.6 474.6 459.8 
12 IWI (cm4) 500 1,500 1,000 1,1l2 
13 ITI (cm4) 50 200 ll3 ll3 
14 1W2 (cm4) 50 200 110 III 
15 IT2 (cm4) 10 100 20.5 13 
16 1W3 (cm4) 50 200 110 145 
17 IT3 (cm4) 10 100 20.5 34 
18 1W4 (cm4) 50 200 85.1 128 
19 IT4 (cm4) 10 100 25.5 40 
20 IWs (cm4) 300 600 420 343 
21 ITs (cm4) 100 300 180 256 

Table 6-5 

Criteria 
<1>1 <1>2 <1>4 <1>s <1>6 <1>7 

Models (%) (%) <1>3 (%) (kg) (mm) (kgf/cm2) (kgf/cm2) 

Prototype 104 6.35 1,000 2,220 
836 +7.9 +6.8 -7.1 92.7 5.68 875 2,217 
596 '-8.8 +4.8 +1.5 97.5 5.83 958 1,928 
716 -9.65 +7.3 -7.4 99.2 6.0 850 1,984 
356 -3.42 +6.0 -9.7 94.9 5.75 817 2,356 
504 -6.0 +6.0 -8.1 91.3 5.62 947 2,299 
924 -12.9 +9.6 -6.7 100.8 6.13 856 2,089 
436 -14.6 -0.8 -10.18 98.9 5.89 971 2,275 
628 -14.5 +15.4 -11.94 93.9 5.9 866 2,314 
708 +14.5 +15.3 +0.6 93.1 5.69 799 1,927 
684 -17.9 +11.3 -15.7 96.2 6.04 932 2,354 
56 +6.5 +6.7 -1.5 92.5 5.55 879 2,084 

980 -7.82 +15.6 +18 94.1 5.85 916 2,036 
20 -16.44 +3.5 -6.26 95.3 5.78 894 2,125 

564 -16.23 +6.4 -19.7 96.9 5.86 910 2,381 
824 -17.3 +6.1 -8.55 96.7 5.56 946 2,01l 

166 
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Table 6-6 

D,mm Models <1>1 (%) <1>2 (%) <1>3 (%) <1>4 (kg) <1>5 (nun) <1>6 (kgf/cm2) <1>7 (kgf/cm2) 

244 -8.9 +5.2 -8.2 95.5 5.53 936 1,814 
168 -3.5 +2.7 +4 90 5.46 934 2,046 

5.5 176 -4.4 +9.32 -7.5 94 5.44 897 1,824 
20 -1.8 +4.7 +ll 92 5.51 883 2,095 
56 +6.48 +7.16 +3.03 91.2 5.48 925 2,067 

74 -6 +3.64 -4 95.3 5.62 933 1,817 

5.6 
2 -5.7 +8.4 -6.9 94.7 5.57 903 1,947 

252 -4.6 +7.6 -0.7 92.4 5.57 932 1,955 
266 +3.2 +1.7 +7.5 93.4 5.59 870 2,018 

62 -9.7 +8.2 +2.7 94.6 5.74 950 2,071 
90 -8.4 -0.5 -2.5 94.8 5.65 992 1,912 

5.7 142 -5.6 -8.2 -4.6 95.3 5.71 858 1,823 
238 -5.4 +7.7 -1.6 95.1 5.73 927 2,043 
166 -3.7 +5.4 +5.8 93.5 5.68 912 2,080 

89 -9.6 +6.7 -13.4 98.6 5.82 886 1,698 

5.8 
-9 +4.9 -1.3 95.9 5.75 886 2,009 

129 -7.3 +8.7 -14.44 97.7 5.75 892 1,945 
97 +5.03 +2.46 +1.2 97.1 5.77 823 1,969 

13 -8.5 +8.67 -8 99 5.88 880 1,785 
67 -8.8 +6.41 -5.5 98.1 5.93 930 1,920 

5.9 
37 -4 -1.5 +3.9 97.1 5.85 885 2,050 
53 -4 +7.9 +9.54 95.7 5.87 828 2,070 
45 -3 -0.85 +6.08 97.05 5.89 904 2,086 

195 +0.41 +3.52 +4.58 96.7 5.93 821 2,095 

6.0 7 -6.5 3.84 -3.3 98.9 6.01 872 2,012 

The first designer-computer dialogue 

For the pseudocriteria accounting for torsional and vertical and horizontal 
bending deformations, the deviations from the prototype values <I>e were limited 
by 10%: 

<l>v(a):S 1.1 <Vv, v= 1,2,3. 

This allowed ensuring proximity of the optimal design and the prototype stiffness 
characteristics. 

In what follows we consider the models whose mass is smaller than that of 
the prototype (104 kg). 

The feasible solutions set contained 11 models, 10 of which were Pareto 
optimal. 

The first dialogue resulted in selection of the five best models, 356, 504, 836, 
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596, and 716, whose masses are considerably less, and the strength characteristics 
better, than those of the prototype. However, the constraints on the frame stiffness 
characteristics introduced previously, are rather stringent. Making them some­
what looser may result in the appearance of additional, no less interesting, 
solutions. 

Subsequently five more designer-computer dialogues were conducted, in which 
the constraints on <l>l(a), <l>2(a), and <l>3(a) were weakened by as much as 20%, 
and the torsional and horizontal-bending stresses did not exceed 1,200 kgf/cm2 
and 2,300 kgf/cm2, respectively. As a result, the feasible solutions set was 
extended. 

Conclusions Concerning the Results of Analyzing Parallelepiped ill 

The main results are presented in Table 6-5 and have been analyzed from the 
viewpoints of the criteria and the design variables. Preference was given to 
models 836, 596, 716, 504, and 56, the first four of which proved to be the best 
in almost all the dialogues. Model 56 is the only one ensuring comparatively 
small stresses for a low side-rail mass. 

For the remaining models (836, 596, 716, and 504) the sheet is thicker. Besides 
model 684, the thickest sheet is used in model 716. Naturally, its advantage in 
the mass, as compared with the prototype, is minimal. 

The analysis of the best feasible models l6 has allowed construction of a new 
parallelepiped, Il2, Il2~Ilb in which 256 trials were conducted. 

Analysis in Parallelepiped il2 

Two dialogues were conducted. Since torsional stresses satisfied the formulated 
requirements for almost all the models, constraints were imposed on the hori­
zontal-bending stresses. 

In all the dialogues, the constraints were imposed that prevent the frame 
stiffness characteristics from exceeding by more than 10% those of the prototype. 
In order to achieve a more significant reduction in the mass, the side-rail mass 
was limited by 100 kg. 

Conclusions Concerning the Results of Analyzing Parallelepiped il2 

The search proved to be highly effective. Owing to the shrinkage of the search 
zone, the results were substantially improved. Of primary importance are the 
horizontal stresses reduction by 10% to 20% and an increase in the sheet thickness 
for a lower side-rail mass. 

The results of the analysis allowed compiling a table of the best models, a 

16Since the illustrative material pertaining to this chapter is extremely voluminous, only a small 
fragment of it is presented here. 
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fragment of which is presented in Table 6-6 where the models are arranged in 
the order of increasing sheet thickness D. As to this design variable the models 
were divided into six groups, with D=5.5 mm, 5.6 mm, 5.7 mm, 5.8 mm, 
5.9 mm, and 6.0 mm (see the first column in Table 6-6). The second column 
contains the numbers of the models. Next follow pseudocriteria <I> 1, <1>2, <1>3, 
and criteria <1>4-<1>7. 

It was found that the most promising models form three groups with the sheet 
thickness D=5.5 mm, 5.8 mm, and 6.0 mm. This circumstance has allowed 
choosing three models, 168, 1, and 7, subsequently subjected to further analysis. 
Compared to the prototype, the models are characterized by lower horizontal­
bending stresses for acceptable side-rail masses and sheet thickness. The latter 
effect was attained by increasing the flange width in the middle and rear portions 
of the frame. 

Model 168 was admitted to be the best one. Its design-variable vector as well 
as the prototype design variables are presented in Table 6-4. 

The General Conclusion 

The major performance criteria of the frame have been considerably improved. 
Among other things, the side-rail mass was reduced by 14 kg. The results of 
optimization have been confirmed by road tests. 

Thus, the mass of the frame whose characteristics were being improved by 
traditional methods for 20 years, was reduced by 28 kg (Velikhov et al. 1986). 
Simultaneously, the stresses in the critical locations were reduced. 

This example demonstrates the efficiency of multicriteria optimization in solv­
ing problems associated with mass production, as in the case of automotive 
industry. 

6-3. Optimization of Metal-Cutting Machine Tools 

Let us consider some aspects of searching for optimal solutions in designing 
metal-cutting machine tools. 

Selection of the Optimal Design Variables of a Vertical Knee-Type 
Milling Machine 

In Gorodetskii (1984) a closed dynamic model of the title machine tool is consid­
ered. The specifics of its general design make the machine prone to forced and 
self-sustained vibrations that limit its productivity and deteriorate the machining 
quality. This study is aimed at shortening the time needed for designing new 
millers characterized by improved vibration stability, machining accuracy, pro­
ductivity, and other technological and economic indices. 

Figure 6-4 shows schematically the structure of a vertical knee-type milling 
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z 

Figure 6-4 Schematic of the structure of a vertical knee-type milling machine. 

machine. The knee, the slide, the table with a mounted part, and the swivel head 
with the upper portion of the column (whose end faces are dashed) were modeled 
by rigid (undeformable) bodies. Up to point A the column is considered a hollow 
rectangular beam. The flexural-torsional deformations of the column caused by 
low-frequency vibration are supposed to be qualitatively analogous to static 
deformations of the beam. This has allowed expressing the point A displacement 
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via the beam's angular rotations and using the angular displacements as general­
ized coordinates. The column mass was reduced to point A. 

The following factors were considered: the stiffnesses and the deformations 
in the column, the table and the slide drives, lifting mechanism, the knee supports, 
and the column base and the knee-column joints. The specifics of natural vibration 
in the latter two joints of the miller made it possible to take into account only 
the stiffness coefficients associated with angular displacements with respect to 
its axes. 

In line with the adopted scheme of calculation the generalized mathematical 
model (the equations of motion) of the miller's closed dynamic system may be 
written in the following operator form: 

where [M], [N], and [R] are, respectively, the matrices of the inertial, dissipative, 
and stiffness coefficients of a miller; [r~;] and [r~;] are the matrices of averaged 
(over a period) dynamic characteristics (the transfer functions) of milling; [A] 
is the generalized coordinates vector; [1"] is the vector of cutting force moments; 
T=(nz)-I, n is the frequency of revolution; and z is the number of mill teeth. 

The set of design variables included the dimensions of the equivalent cross 
sections of the column, the fixed column-base joint and the movable knee-column 
joint, as well as the stiffnesses of the lifting mechanism and the knee supports 
and the distances from the column face. 

The quality of the machine tool was estimated using the following five criteria: 
the amplitudes of the mill-workpiece relative vibrations in the directions of the 
table, slide, and knee feeds, denoted by <1>1, <1>2, and <1>3 respectively; the recipro­
cal of the limiting mill depth, <1>4, and the metal consumption, <1>5. 

The algorithm of searching for the optimal solutions was based on the use of 
the PSI method and consecutive implementation of the following operations at 
each point of the design-variable space: 

1. Calculation of natural frequencies Wi with the help of the characteristic 
equation of an open-loop conservative system. 

det{[M]p2+[R]}=0, p=jw (6-6) 

2. Calculation of the natural modes of vibration [Ai] corresponding to 
natural frequencies Wi, carried out using the conservative model ([N] =0). 

3. Calculation of forced vibration of the structure for each natural (reso­
nance) frequency Wi in the cutting zone, using the equation 

{[M]p2+ [N]p+ [R]} [A] = [M], p=jw (6-7) 

4. Calculation of the milling depth starting from which self-sustained vibra­
tion sets in (the depth is called limiting, and is calculated using Eq. 
(6-5)) 

5. Calculation of the metal consumption. 
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Next we present the results of optimization of a vertical knee-type milling 
machine, aimed at decreasing the latter's resonance amplitudes and increasing 
vibration stability (accompanied by a decrease in the metal consumption). 

The analysis has been carried out for the case of symmetric longitudinal milling 
with a face milling cutter. The specimens of width B= 100 mm were made of 
steel 45; the milling cutter frequency of revolution n equaled 160 rpm, and the 
feed Sz=0.125 mm per revolution. The problem was solved using mathematical 
model (6-5) of a closed dynamic system of a machine tool with a matrix of 
period-averaged dynamic characteristics of the milling process. 

The set of design variables of the structure incorporated the dimensions of the 
movable knee-column joint, <XJ, <X2, <X3, and <X4; the geometry of the fixed column­
base joint, <X5, <X6, <X7, and <X8; the ordinate of the point of application of the 
knee feed mechanism force, <X9; the stiffness of the knee lifting mechanism, <XIO; 

the knee supports ordinate <Xli; the knee support stiffness <Xl2; and the geometry 
of the equivalent cross section of the column, <X13, <X14, and <X15 (see Fig. 6-4). 

The calculation of particular criteria «1>1-«1>5 at each trial point required a great 
deal of computer time. Therefore, first the spectrum of natural frequencies and 
the objective functions «1>v were analyzed. 

Then the limiting milling depth was calculated for each natural frequency. 
The solution of the general problem was reduced to the analysis of the machine 
tool's dynamic quality over a limited set of potentially unstable modes of vi­
bration. 

Preliminary calculations have yielded the spectrum of natural frequencies and 
the limiting milling depths for the prototype machine tool over the range of 
frequencies from zero to 200 Hz. It was found that for 28 Hz, 87 Hz, and 147 
Hz the machine tool had a substantial stability margin; however, for 58 Hz 
and 75 Hz milling became unstable for the depths of 10.8 mm and 3.3 mm, 
respectively. 

The performance criteria were calculated using a system of modal equations 
derived by energy methods for the second and the third natural frequencies. 

For the frequencies of 58 Hz and 75 Hz, 11 and 22 models were included 
into the feasible domain, respectively. The best models were found within the 
intersection of the optimal models sets obtained for the two frequencies. The 
values of their particular criteria are presented in Table 6-7. 

Subsequent analysis has shown that the models correspond to substantially 
better values of the performance criteria as compared with the prototype. Thus, 

Table 6-7 

Models <1>1 (fLm) <1>2 (fLm) <1>3 (fLm) <1>4 (m· l) <1>5 (kg) 

17 6.74 23.4 16.7 39.6 3,340 
26 15.5 61.8 42.8 84.3 3,330 
59 18.7 19.3 13.7 60.7 3,380 
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for model 59 the limiting milling depth increased by approximately a factor of 
five, and the metal consumption decreased by 7%. 

The analysis has allowed fonnulation of a number of general statements and 
concrete recommendations for improving vertical milling machines: 

1. The oscillations were suppressed mainly owing to an increase in the 
flexural-torsional stiffness of the lower portion of the column and in the 
stiffnesses of the lifting mechanism, the knee support, and the column­
base joint. 

2. The metal consumption was reduced by optimizing the geometric vari­
ables .of the basic units cross sections. 

3. The dynamic quality indexes of vertical NC millers may be improved 
by passing from knee-type to compound-table milling machines. 

Besides, the time needed for finding the optimal solution characterized by 
enhanced vibration stability, lower level of forced vibration, and lower metal 
consumption, has been considerably decreased. 

Determination of Significant Design Variables in Optimizing the Structures of 
Lathes with Movable Workheads (Betin and Kaminskaya 1992) 

Figure 6-5 shows the scheme used for calculation of the structure of a precision 
lathe. A finite element beam model of the machine tool was considered. The 
bed, spindle head, carriage, chuck, and pneumatic cylinder were assumed to be 
rigid bodies. 

The scheme of the structure incorporates two subsystems: the carriage and the 
spindle head. By M; we denote the ith inertial element possessing both mass and 
the moment of inertia. The joints and supports are denoted by K; and J; and are 
characterized by linear and angular stiffnesses of the corresponding structural 
elements of the machine tool. Within the framework of the finite element model 
of the machine tool under consideration the spindle is represented by beams. 

Optimization criteria include the stresses in the guideways and the static and 
dynamic compliances. 

Selection of significant design variables 

As noted in Section 5-2, design variables are the variables that have the greatest 
effect on the perfonnance criteria. The analysis allowed finding the distributions 
of kinetic and potential energies of vibration among the lathe elements for the 
natural frequencies equal to 181 Hz and 387 Hz (for the prototype). For the 
frequencies 181 Hz and 387 Hz the major kinetic energy component is detennined 
by the spindle head (64%) and the chuck (68%) vibrations, respectively. For the 
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frequency 181 Hz, 80% of the total potential energy correspond to the spindle 
head vibration (mainly the angular ones with respect to the axis Z), and only 
6.5% to translational vibration of the carriage proceeding in the feed direction. 
For 387 Hz, 58% correspond to the chuck vibration. The contributions of the 
remaining elements into the kinetic and potential energies were insignificant. 

Figure 6-5 Scheme used for calculating the structure of a precision lathe. The elements 

and notation. Inertial elements [!] : MJ is the spindle head; M2 the carriage; M3 the 

chuck; M4 the spindle housing; Ms the pneumatic cylinder; M6 the bracket; M7 the motor 

stator; Ms the motor rotor; M9 the bed. Stiffness elements a : kJ refers to the 

spindle head-bed pair; k2 to carriage-bed; k3 to chuck-spindle; k4 to spindle head-spindle 
housing; ks to spindle-pneumatic cylinder; k6 to bracket-bed; k7 to stator-bracket; ks to 
stator-rotor; k9 to stator-spindle head; klO to the belt transmission; kll and k12 to the 

'pirull, ""","g,.1I] j,. j,. ",d h ,re the """hino tool .up",,",. Finit' "'m,", 

beam model: I ell IC:::====DI I I is the spindle. 
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Therefore, in solving the optimization problem the parameters related to these 
elements were not varied. Thus, it is clear that for the frequency 387 Hz the 
dynamic characteristics of the system may be primarily changed by varying the 
chuck parameters. Thus, in optimizing the design variables of the structure 
attention must be concentrated on improving the compliance determined by the 
spindle and carriage parameters. The analysis of the data on the kinetic and 
potential energy distribution, as well as of the shape of the structure's vibration 
at the frequency of 181 Hz, shows that the level of relative vibration within the 
cutting zone depends on the magnitude and direction of the spindle head angular 
vibratory displacements and translational vibratory displacements of the carriage. 

In line with what was said previously, the following nine parameters were 
varied: the mass of the spindle head and carriage, the stiffness of the carriage 
feed drive, and the geometric variables of the main faces of the spindle guideways. 
The latter geometric variables determine the stiffness of the spindle head 
guideways. 

The results of optimization (following N= 1 ,024 trials) are presented in Table 
6-8 where the values of dynamic compliances are presented only for natural 
frequencies. For the model 70 and the prototype the natural frequencies lie outside 
the range of frequencies 270 Hz-350 Hz. 

Let us summarize the major results of the study. 

1. As regards the dynamic compliance, models 484 and 627 are the best 
ones over the entire frequency range. A still higher dynamic compliance 
of model 70 is explained by the proximity of the partial frequencies of 
the head and the carriage, while for model 302 it is explained by a low 
stiffness of the carriage feed drive. 

2. For the most preferred models, 484 and 627, the design variable values 
are such that for the lower and the upper natural frequencies the vibrations 
of the carriage and the head dominate, respectively. 

Table 6-8 

Performance criteria 

Pressure in Static 
Dynamic compliance over the 

guideways compliance 
frequency range (10.3 mmlN) 

Models (10.5 kgf/cm2) (10-4 mmlN) [170-2401 Hz [240-3501 Hz 

70 33,000 0.69 0.185 
138 45,800 0.68 0.109 0.219 
302 41,500 0.70 0.115 0.175 
484 43,400 0.68 0.161 0.139 
522 54,000 0.67 0.127 0.307 
627 50,200 0.68 0.159 0.122 

Prototype 77,900 0.75 0.212 
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The analysis has revealed a strong dependence of the dynamic compliance 
within the cutting zone on the relationship between the partial frequencies of the 
spindle head, the carriage, and the chuck vibrations. For the best solutions the 
frequencies differ by 30%-35%. 

These results allow formulation of two general recommendations for decreasing 
the dynamic compliance of the structure: 

1. The stiffnesses of the head guideways and the carriage feed drive must 
be made sufficiently large (within the fixed overall dimensions) 

2. The inertial characteristics of the elements must ensure the corresponding 
relationships between the partial frequencies for the chosen values of 
the elements stiffnesses. 

Other Studies in Machine Tools Optimization 

In Sections 4-3 and 5-3 we discussed some studies aimed at optimization of 
slotting and grinding machines. Here we present some more interesting studies 
in the area, based on the PSI method. 

Design of the structure of a multipurpose single-column vertical boring and 
turning machine 

It was necessary to design a machine tool surpassing the prototype in the basic 
performance criteria. The two specific features of the problem are the high 
dimensionality of the design-variable vector and calculations taking a great deal 
of computer time. The latter was reduced by using multicriteria identification. 
The cross section of the machine's column had a complicated configuration and 
was described by a large number of design variables. In order to reduce the latter 
the column cross section was simplified, and the adequacy of the real and 
the simplified column cross sections in the basic geometric characteristics was 
demonstrated. The latter included the cross-sectional area of the column, its 
moments of inertia, and torsional stiffness. The adequacy was proved using the 
method of multicriteria identification discussed in Chapter 4. The differences in 
the geometry of the prototype and the column model with the simplified cross­
section of the column were subjected to minimization. Minimization was imple­
mented by varying the parameters of the cross section. As a result, the adequate 
vectors were found, the dimensionality of which was much smaller than that of 
the prototype. Subsequently, this allowed solving the problem of optimization 
of the machine tool's structure in an acceptable time. The following four criteria 
were optimized: vibration activity within the workpiece machining zone, vibration 
stability (the Nyquist criterion), static compliance, and the metal consumption 
per column (Kaminskaya 1984). By solving the problem the latter was reduced 
by 8%; the dynamic characteristics of the machine tool were improved by 12% 
compared to the prototype. 
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In Khomyakov and Yatskov (1984) the design variables of the structure of a 
heavy-duty single-column vertical boring and tuning machine were optimized 
with respect to the mass of the structure and the latter's total compliance, both 
of which are highly important for ensuring accuracy of workpiece machining. 
As a result, the stiffness of the structure increased in the direction normal to the 
surface of a large part being turned, and thus the turning accuracy and productivity 
were improved. 

Work (Zinyukov et al. 1983) deals with optimizing the drives of various pipe­
cutting machines for which 30 parameters were varied and five objective functions 
were optimized, which characterized the machine's vibration activity, mass, and 
dynamic loads acting on the spindle unit bearings and the foundation. As a result, 
the quality of the drives was improved in the basic criteria. Realization of the 
results has allowed designing compact machine tools characterized by smaller 
metal consumption and lower loads; simultaneously, the productivity of the 
machine tools increased. 

Also, we would like to mention works (Debagyan and Khomyakov 1982) 
dealing with the general methodology of multicriteria optimization of machine 
tools. 

6-4. Some Other Problems 

Gear Unit Design 

Since gear units are manufactured in large quantities, optimization of their design 
may result in a considerable economy. A continuous growth in operational loads 
and speeds of machines and mechanisms is to be accompanied by decreasing 
the overall dimensions and masses of their reduction gears, as well as by an 
increase in the load-carrying capacity, reliability, and durability of gearings. 

The quality of a gear unit is primarily determined by the gearings. The charac­
teristics of all the other components (shafts, bearings, body, joints, etc.) are 
defined by the dimensions and arrangement of the gearings and the loads acting 
on them. 

Multicriteria optimization of the two-stage gear unit of a roller table 
rollers drive 

The device (see Fig. 6-6) has been manufactured for some years already. Its 
operational output-shaft torque is T=4,905 N·m. The gear unit is reversible and 
is driven by a motor whose power is 22 kW and the rotational frequency nl =650 
rpm. The nominal gear ratio uo=9.92 may vary by ±1%. 

In Fig. 6-6 superscripts 1 and 2 correspond to the first (input) and the second 
(output) stage, respectively; a~ and a~ are the center distances; ~l and ~2 are 
the helix angles, b~ and b~ are the gears' working face widths; zl and zI are the 
numbers of pinion teeth; and z! and ~ are the numbers of wheel teeth. 
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Figure 6-6 Schematic of a two-stage gear unit. 

Problem formulation and solution 

It is necessary to improve the prototype gear unit in the basic performance 
criteria. 

Performance criteria. The volume <1>1 of a gear unit determines the quantity 
of material needed for manufacturing it. Since the load-carrying capacity of a 
gear unit is often limited by the bearing units, the maximum loads on the supports 
are to be taken into account. This is done with the help of the criteria 
<l>2=F!,2) and <l>3=R~ representing the maximum axial load and the maximum 
reaction of the supports (in the case under consideration, on the second intermedi­
ate shaft). 

The performance criteria of the first stage were represented by the contact 
endurance safety factors <1>1 =SJIl and <1>1 =sJf2 of the gear and the wheel, bending 
endurance safety factors <I>!=S}1 and <I>!=sh of the gear and the wheel, the 
center distance <l>A=a~, the gear working face width <I>~=b~, the number of gear 
teeth <l>A = zl, transmission ratio <I>~ = u 1, and the wheel addendum circle diameter 
<l>lo=d!l. 

Criteria <I>~ through <I>?o refer to the second stage of the gear unit. Table 6-9 
presents the values of the most important criteria. 

Functional constraints. The ratios of the center distances a~+l/~ and modules 
mi+l/mi of the ith and (i+ l)th stages must satisfy the inequalities 



www.manaraa.com

Ta
bl

e 
6

-9
 

P
er

fo
nn

an
ce

 c
ri

te
ri

a 

G
ea

r 
bo

x 
St

ag
e 

I 
S

ta
ge

 2
 

.....
 

<1>
1 

<1>
2 

<1>
3 

<1>
1 

<I>
~ 

<l>
A 

<I>
~ 

<I>
~ 

<1>
4 

<I>
~ 

<1>
5 

<I>
~ 

<I>
~ 

<I>
~ 

<I>
~ 

<I>
~o 

~
 

V
·IO

-7
, 

p
"2

) 
R

(2
) 

S
l 

si
l 

a~
, 

b~
, 

zl 
u

l 
s'k

l 
si

l 
a;,

 
b~

, 
z~
 

u2
 

df.
2

, 
a 

, 
m

ax
, 

H
I 

M
od

el
s 

(n
u

n3
) 

(N
) 

(N
) 

(n
un

) 
(n

un
) 

(n
un

) 
(n

u
n

) 
(n

un
) 

P
ro

to
ty

pe
 

12
.1

 
2,

15
0 

17
,6

81
 

1.
16

 
2.

88
 

22
4 

90
 

46
 

2.
80

 
1.

20
 

3.
08

 
35

5 
14

5 
38

 
3.

58
 

56
0 

1,
76

6 
9.

9 
1,

30
0 

20
,0

91
 

1.
23

 
3.

55
 

21
2 

10
4 

37
 

3.
43

 
1.

26
 

3.
23

 
32

5 
13

9 
47

 
2.

87
 

48
9 



www.manaraa.com

180 I Multicriteria Optimization and Engineering 

The requirements of equal contact and bending strength of interacting gears 
are represented by functional constraints of the fonn 

The values of cj,; and cj,*;, j=l, 2, 3, depend on the thennal treatment, gear 
hardness, and the stage transmission ratio. 

Some other functional constraints, such as the conditions of teeth undercutting 
and interference absence, were also taken into account. 

The following parameters were varied for the first and second stages of a gear 
unit: the center distances a~ and a;, the relative face widths I\IL and I\IL, modules 
m1 and m2 , and the helix angles (31 and (32. Also the transmission ratio of the 
first stage was varied. Characteristically, some of the determining variables vary 
continuously, while others (the modules and the numbers of teeth) vary in a 
discrete manner. Since the overall transmission ratio was specified, the last-stage 
transmission ratio was a dependent design variable. Some of the design variables 
played the role of criteria at the same time. The materials and thennal treatment 
were assumed to be the same for the prototype and the newly designed model. 

Upon implementing the optimization calculations (4,096 trials, several seconds 
of computer time each) the initial boundaries of the design variables were cor­
rected in line with Section 1-3. 

It was found that the functional constraints are satisfied for 116 solutions. As 
a result, a feasible solutions set consisting of six solutions, was constructed. 
Tables 6-9 and 6-10 present the values of the perfonnance criteria and design 
variables for the prototype and the most preferred modell, 766. The comparison 
of the latter two shows that: 

1. The volume of the gear unit was reduced by 18%. Also, the contact 
endurance safety factors of the optimal solution were improved compared 
with the prototype. 

Table 6-10 

Design variables 

Stage I Stage 2 

III 112 113 Il.I IllS 116 117 Ilg Il9 

a!. I\It.t ml ~I ul a;. I\I~ m2 ~2 

Models (mm) (mm) (deg) (mm) (mm) (deg) 

Prototype 224 0.73 2.5 12"25'46" 2.80 355 0.95 4.0 11°23'49" 
1,766 212 1.08 2.5 14°45'53" 3.43 325 0.83 3.5 11°28'42" 



www.manaraa.com

Examples of Multicriteria Optimization of Machines I 181 

2. The second-stage wheel addendum circle diameter became substantially 
smaller (489 mm and 560 mm for the optimal solution and the prototype, 
respectively). This simplifies both the production technology and thermal 
treatment of the gear wheel. 

The prototype was primarily improved owing to an increase in the transmission 
ratio and the relative width of the first stage. 

This technique of multicriteria optimization may be used for any kind of 
multistage gear unit, gear boxes included. 

Some other examples of gear units design. Multicriteria optimization of the 
design variables of machine tool kinematic chains composed of cylindrical gear­
ings is discussed in Pluzhnikov (1983). It was necessary to determine the gearing 
design variables ensuring the best output accuracy (the minimal kinematic error), 
the minimal cost, mass, and overall volume of the mechanism. It was shown 
that the prototype may be considerably improved. 

Multicriteria optimization of a gear unit is considered in Grinkevich et al. 
(1978). The study was aimed at improving vibroacoustic characteristics of subma­
rines. The following were subjected to minimization: the amplitudes of displace­
ments and accelerations of gear wheel bearings, the amplitudes of dynamic forces 
exerted by the bearings on the foundation, the mass of the parts, and the number 
of natural frequencies within the operational frequencies range 5-300 Hz. As 
compared with the prototype, the values of all the criteria were improved by 
40--200%. 

Optimization o/Trunk Shakers (Chernikov 1986) 

Trunk shakers are widely used in mechanized harvesting of fruit and nuts intended 
for industrial processing. The technological process involves gripping and squeez­
ing the lower part of a tree trunk (or a branch) with shaker pads, and shaking it 
to remove the fruit. 

Trunk shakers often incorporate linear inertial actuators that make a trunk 
vibrate owing to an oscillatory motion of a special mass in the direction perpendic­
ular to the trunk. In what follows, the shaker is called a vibrator, since the latter 
term is widely used. 

The kinematic, dynamic, and energy calculations were aimed at choosing the 
actuators' design variables guaranteeing the required completeness of the fruit 
removal, the minimal damage to a trunk, and minimal mass and energy character­
istics. 

The dynamic model of the "tree-vibrator" system takes into account the effects 
of the characteristics of a tree, the gripper pads, and the vibrator (Fig. 6-7). 

In describing the model the following nomenclature was used: c and n are the 
coefficients characterizing the elastic and damping properties of a tree at the grip 
point; Cl and nl are the analogous characteristics of the gripper pads; me is the 
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Figure 6-7 Dynamic model of the "tree-inertial virator" system. 

equivalent mass of a tree reduced to the grip point; me is the mass of the vibrator 
part connected with the tree by means of the gripper; L is the distance from the 
plane where the pads are mounted to the connecting rod pin; I is the connecting 
rod length; r is the crank radius, mvib is the mass of the movable parts of the 
vibrator; 0 1 and O2 are the origins of the coordinate systemsXlOlYl andX202Y2, 
respectively; X2B and X2C are the coordinates of points Band C in coordinate 
system X202Y2; X is the trunk deflection; and Xl is the gripper pad deformation. 
Below, a crank vibrator is considered. 

The mathematical model of the vibrator was described by the fourth-order 
system of differential equations. Upon solving the system of equations the neces­
sary kinematic, dynamic, and energy calculations were carried out. The calcula­
tions yielded the amplitudes and phases of the trunk and pad displacements; 
forces Ql and Q2 applied to the trunk and the mass myib of the movable parts 
of the vibrator, respectively; the energy spent during a period of vibration; the 
instantaneous energy-source power; mean power Nm ; etc. 
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The parameters mo, mvib, nJ, r, I, 00, and Cl were varied. Here mo is the total 
vibrator mass, and 00 is the crank rotational frequency. 

Functional constraints: 

b~::::;IX(t)l::::;b~* , 
IQl(t)I::::;Qt* , 
Xl (t)::::;bt* 

where X(t) is the trunk displacement at the grip point; Ql(t) is the force exerted 
on the trunk by the vibrator; and Xl(t) is the gripper pad deformation. 

The first constraint ensures the correspondence of the trunk deflection amplitude 
to the technological requirements, the second one prevents damaging the trunk 
bark, and the third constraint determines the limiting deformation of the gripper 
pads. The third functional dependence, Xl(t), was converted into a pseudocrite­
rion. The following are performance criteria to be minimized: the mass of the 
moving parts of a vibrator, mvib; the force exerted on the crank, Q2(t); mean 
power, Nm; and the total vibrator mass, mo. 

The analysis has allowed finding the optimal model for which the total vibrator 
mass is 44% smaller than that of the prototype (whose mass is 140 kg (Chemikov 
1986». Simultaneously, the constraints imposed on the trunk deflection amplitude 
were satisfied and so were the constraints on the magnitude of the forces acting 
on a trunk. All other criteria were also improved. 

Flexible Manufacturing Systems Design (Portman et al. 1992) 

By definition a flexible manufacturing system (FMS) is a set of numerically 
controlled technological equipment and the systems for supporting the latter's 
automatic operation during a given time interval. Within the technological possi­
bilities of its equipment an FMS may be readjusted for manufacturing diverse 
products. 

Besides being highly automated, an FMS must allow rapid readjustment in 
response to variations in the production program. 

The FMS for the electric discharge machining (EDM) of forming machinery 
parts at a die-making plant incorporates 23 EDM machines, a pallet loading 
station, and a stacker putting loaded pallets onto a transfer station positioned 
near a group of machine tools serviced by one mobile robot. The latter lifts the 
pallets from transfer stations and puts them onto the input tables of machine 
tools. Also a tunnel washer is installed to clean and dry the processed parts. 

The route production process includes the following operations: 

• The loading of blanks onto pallets at the loading station 

• EDM 
• Washing. 
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Figure 6-8 The cyclogram of the machine operation (the prototype). 

In turn, the transporting-loading operations include: 

• The transfer of a pallet from the loading station to storage 

• The transfer of a pallet from a machine tool/washer to storage 

• The transfer of a pallet from a machine tool to the washer (if the two 
machines are serviced by the same robot). 

The processing of 84 batches of parts (an average fortnight production volume) 
was simulated moving through the technological and auxiliary equipment. Simu­
lation of the prototype workshop has shown that (1) The time of processing of 
a complete set of parts was 47.4 h; and (2) the average machine-tool utilization 
factor equaled 0.5. 

The general pattern of the workshop operation is clear from the cyclogram 
shown in Figure 6-8. This figure presents the time of the FMS workshop operation 
(shown on the abscissa axes), and the number of EDM machines (given on the 
ordinate axes). The time intervals during which the machine tools operate are 
blackened, blanks indicate machine down time. The simulation has shown that 
the machine tool down time was mainly caused by an inadequate number of 
loading stations and the operators servicing them, as well as by a limited central 
storage capacity (the number of cells). 

In order to improve the major performance criteria of the prototype the problem 
of multicriteria optimization of the FMS parameters was formulated. The criteria 
to be optimized are listed in Table 6-11. These criteria determine the technological 
and economical efficiency of the FMS under consideration. 

The following FMS parameters were varied: the number of electric discharge 
machines, the number of loading stations, the storage capacity, the average 
duration of the storage stacker cycle, the number of servicemen, and the form 
of the personnel work organization (the individual or team one). 
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Table 6-11 

Criteria 

Duration of the production program execution, hours 
Duty factor of EDM machines 
Maximum loading of the storage 
Stacker duty factor 
Duty factor of an operator serving the loading station 
Number of EDM machines 
Number of servicemen 
Workpiece storage capacity 

Prototype Optimal model 

47.4 34.0 
0.5 0.67 

30 60 
0.19 0.17 
0.44 0.47 

23 24 
3 4 

30 60 

The storage stacker working cycle includes the transfer of parts from a place 
of reloading to storage cells, the loading of containers, and the transfer from a 
cell to the point where the containers are reloaded and emptied. 

The optimal solution criteria are compared with those of the prototype in Table 
6-11. We see that though some of the former are worse than the latter (for 
instance, the number of servicemen and the number of EDM machines), the major 
criteria have been improved. The productivity of the workshop has increased by 
a factor of 1.4; also improved was the machine-tool utilization rate. 

From the optimal machine tool operation cyclogram shown in Figure 6-9, it 
follows that the down time was markedly reduced compared with the prototype 
(Fig. 6-8). Figure 6-10 shows the current number of storage cells (K) loaded 
with blanks and semifinished articles during the workshop operation period (h). 
We see that for the optimal solution the time during which the storage is fully 
loaded, is considerably shorter than for the prototype. 

Thus, the use of the PSI method has resulted both in a substantial improvement 
in the FMS design and a 12-fold reduction in the time needed to find the optimal 
solution. 

4 8 12 16 20 24 28 

Figure 6-9 The cyclogram of the machine operation (the optimal solution). 
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Figure 6-10 The diagram of storage capacity. 1 and 2 denote the prototype and the 
optimal solution, respectively. 

Optimization of the Die-Casting Machine Locking Mechanism 
(Nogovitsin 1987) 

Die-casting is a progressive and highly productive technology used for manufac­
turing nonferrous thin-walled castings requiring minimal additional processing. 
It is implemented using die-casting machines. Presently, widely used machines 
are universal machines with horizontal cold press chambers, whose locking and 
injection mechanisms are mounted on the same frame. The former mechanism 
serves for locking the half-molds within which a casting is formed, and is loaded 
by the forces arising during the filling of the mold with liquid metal and the 
latter's crystallization. 

In designing a lever locking mechanism the determination of the slider stroke 
Xs and the force Pc acting on the cylinder rod for a fixed mold-locking force are 
of great importance. The latter is determined taking into account the friction 
torques in the lever system hinges and the mechanism's rigidity (Nogovitsin 
1987). The functional constraints imposed on the lengths of the links and their 
angular positions were formulated taking into account the specific features of 
the mechanism. 

The optimal design variables of the mechanism had to be obtained subject to 
the condition that they ensure the minimal slider stroke max Xs~min, and the 
maximum force acting on the cylinder rod, max Pc~min. (Since the force varies 
during the working cycle, its maximum value attained after the half-molds contact 
each other was minimized.) Also subjected to maximization was the movable 
plate travel, max Xp~max. (In doing so several prototype characteristics, such 
as the mold locking force equal to 8,000 kN, the diameters of the larger and the 
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smaller hinge axes (0.14 m and 0.075 m, respectively), and the mechanism's 
stiffness coefficient equal to 2.4'106 kN/m, had to be preserved.) 

Upon conducting 600 trials using the PSI method, an optimal solution was 
obtained, the criteria of which surpassed those of the prototype. 

The analysis has allowed increasing the movable plate travel from 710 mm 
to 920 mm and decreasing the slider stroke without changing the maximum force 
acting on the locking cylinder rod. 

Optimization of Freshly Harvested Haws Extraction (Murav' ev and 
Bredneva 1987) 

Prevention and cure of cardiovascular diseases is one of the most pressing prob­
lems of the present-day medicine. Among the plants used for this purpose, 
hawthorn (Crataegus gen.) is of special importance. Its preparations produce 
cardiotropic, hypotensive, sedative, and hypocholesteremic effects, and are prac­
tically nontoxic. 

The study was aimed, in particular, at analyzing the factors affecting the 
process of haws extraction. Factors subjected to analysis were the infusion time, 
ethanol concentration, the method used for chopping raw material, the raw 
material fineness, the raw material-to-extractor ratio, etc. It was supposed that 
extraction proceeded in three stages. The following eight parameters were varied: 
the character and the fineness of chopped haws (unchopped, milled, crushed, 
and rolled), the time of infusion in percolators, alcohol concentration, and the 
raw material-to-extractor ratio. 

The experiment was planned using the PSI method. According to this method, 
32 eight-dimensional points, ai=(uL ... ,u~), i= I ,32, were obtained. After that, 
32 full-scale trials were conducted using these points. Then, a multiple-regression 
equation was compiled and analyzed. This allowed obtaining the expressions 
for the two optimization criteria: the dry residue output and the raw material 
exhaustibility factor. Next the feasible solutions and Pareto optimal sets were 
compiled, and the sensitivity of the criteria to the change of design variables 
was analyzed. It was found that the optimum value of the raw material-to­
extractor ratio lay between 0.3 and 0.4. This corresponds to the raw material 
being exhausted by 90% and allows obtaining a fresh-haws tincture with the dry 
residue content in excess of2%. The results ofthe study were used for developing 
the request for producing the tincture and were subjected to approbation at three 
pharmaceutical factories. 

Ship Design (Berezanskii and Semenov 1988) 

The ever-increasing scope of the support of off-shore oil extraction operations 
poses the problem of improving the efficiency of regional technological com­
plexes of the oil and gas industry fleet. The boundaries of the ship design variables 
were determined by analyzing statistical data on the ships of a given type. 
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The quality of a ship being designed was characterized by its tonnage, speed, 
construction, capital investments, and operational costs. The study was aimed 
at improving the performance criteria of the UT -704 ship constructed by the 
Norwegian ULSTEJN firm for supporting oil drilling rig operation. The ship is 
used for transporting liquid, dry, and loose loads. In line with the previously 
formulated problem the following criteria constraints corresponding to the UT-
704 performance criteria, were imposed: 

P,2 1 ,200 t, Vs216 knots, K:s5.01 million roubles 
(in 1984 prices), and C:s0.62 million roubles 

Table 6-12 shows the design characteristics of supporting ships for the most 
advantageous Pareto optimal solutions and the prototype. The following notation 
is used: L is the length of the ship, B is its width, T is the draught, Ne is the 
power plant output, P, is tonnage, and K and C are the capital investments and 
operational costs, respectively. 

We see that the prototype has been substantially improved. 

Selection 0/ the Structure and Design Variables 0/ Active Pneumatic and 
Hydropneumatic Vibration Isolators (Kreinin et al. 1986) 

Vibration isolators of mechanisms are used for both reducing the loads transferred 
onto foundations over a wide range of frequencies and limiting the displacements 
due to low-frequency excitation in changing operational modes. Active pneumatic 
and hydropneumatic vibration isolators are widely used in transport engineering 
due to their reliability, economical efficiency, and structural simplicity. Such 
isolators develop low dynamic stiffness at frequencies ranging from 5 to 104 Hz, 
and high dynamic stiffness over a frequency range of 0.1-0.2 Hz. 

Various designs of double-chamber active pneumatic and hydropneumatic 
vibration isolators were subjected to analysis. The domain of feasible design 
solutions was defined in the space of the following three performance criteria: 
damping at the resonance frequency /0, the low-frequency dynamic stiffness for 
/:S0.2/0, and the working medium flow rate (the source intensity). 

Table 6-12 

K C 
L B T Ne P, Vs (million (million 

Solutions (m) (m) (m) (kW) (10-3 t) (knots) roubles) roubles) 

59.19 14.38 4.64 4,402 1.55 16.2 4.82 0.604 
Pareto-optimal 59.22 14.69 4.75 4,402 1.62 16.3 4.86 0.607 

solutions 61.38 13.52 4.36 2,783 1.54 16.4 4.98 0.612 
56.24 13.67 4.47 2,989 1.23 16.0 4.56 0.540 

UT -704 (prototype) 56.4 13.8 4.75 3,680 1.21 16.0 5.01 0.620 
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The stiffness, load-carrying capacity, and other parameters of a vibration 
isolator were assumed to be known, while the damping chamber volume, the 
flow rate through the interchamber capillary, and the regulator gain factor were 
varied. The functional constraints involved the damping chamber volume, the 
interchamber capillary tube dimensions (depending on these dimensions, the 
chambers can operate as if they were fully isolated through as if they were a 
single whole), the system's stability margin, etc. 

The analysis has allowed determination of the optimal structure of an active 
vibration isolator possessing the maximum dynamic stiffness over a frequency 
range of 0.1-0.2 Hz and meeting the stability conditions. It has been shown that 
at a frequency of 0.2 Hz the dynamic stiffness of a double-chamber vibration 
isolator with a controlled damping chamber may be increased by a factor of 10-
20 compared to a passive isolator with a natural frequency of 1.5 Hz. 

Design variables of a passive double-chamber vibration isolator were also 
determined, ensuring maximum damping at the resonance frequency for a speci­
fied static stiffness. It has been shown that the introduction of a damping chamber 
results in the energy-absorption coefficient increasing by a factor of two to 
four at the resonance frequency, and the static stiffness decreasing by 10-20% 
depending on the type of the pneumatic isolator. Practical realization of these 
recommendations allowed decreasing amplitudes of the mechanism displace­
ments at the first resonance frequencies by a factor of two to four. 

In conclusion, we would like to mention some more practically important fields 
where the PSI method has been successfully used, such as an increase in the effi­
ciency of mathematical simulation in petrophysics (Ingerman 1985), simulation 
in multicriteria problems of nonlinear adaptive optics (Karamzin et al. 1986), an 
increase in the efficiency of mechanization of subway construction on the basis of 
the module principle (Auerbakh et al. 1985), the design of transmissions of the main 
drives of rolling mills (Zhitomirskii, Rubanovich, and Filatov 1984), protection of 
the operators of open-cut machines against vibration (Tregubov 1983), an active 
vibration protection system (Zaikova and Yablonskii 1991), flying vehicles engines 
(Khronin et al. 1984), an electrohydraulic amplifier with nonunity feedback (Boro­
vin et al. 1985), machines shafting (Godzhaev, Dmitrichenko, and Guberniev 
1992), etc. Recently, studies on optimization of an automobile engine, a steering 
rack gear, the Macpherson wheel suspension, prospective truck cushioning sys­
tems, a high-speed centrifuge rotor, internal wheelheads mounted on ball bearings, 
low-power asynchronous machines, and damping devices for actuator suspension 
systems of a coal-loader have been fulfilled. 

Finally, we draw the reader's attention to the problems of computer-aided 
design (CAD) and the role PSI plays in their solution (Gerasimov et al. 1985; 
Rizkin 1985; Popov 1986; Baturidi et al. 1991). At present, the PSI method is 
widely taught in higher educational establishments (see, for instance, textbooks 
(Odrin 1986; Reshetov et al. 1985». 
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Conclusion 

The world of engineering optimization problems is unbelievably vast. 
Billions of dollars are spent on creation and operation of machines, mecha­

nisms, instruments, and structures. That is why optimization in engineering, 
especially in designing, must be implemented at a qualitatively new level. 

If we compare optimal design to a high building under construction, we are 
now on one of its first floors. Clearly, there is a colossal difference between an 
optimal design and the optimal machine. But one hardly may count on manufactur­
ing an optimal machine without having first designed it in the optimal way. 

Poor knowledge of the fundamentals and principles of engineering optimization 
is one of the reasons why the machines we are presently manufacturing are 
inferior compared to those we are capable of manufacturing. Such is the cost of 
our ignorance, and this is characteristic of all industrial countries without any 
exclusions. Someone may retort that there are and always have been good ma­
chines created without employing any science of optimal design. These are 
mainly exceptions. Therefore, the sooner we learn that an optimal design is not 
a whim but rather a must, that we are not so rich as to afford designing nonoptimal 
machines and structures, and also that the quantity of manufactured machines 
by no means compensates for their inferior quality, the sooner we will make 
decisive strides toward scientific and technological progress. 

At present what hampers the search for the optimal solutions to engineering 
problems? The lack of adequate mathematical models and, no less important, 
the inability to formulate a problem of optimization correctly make the designers 
employ their intuition more often then is necessary. This would be acceptable 
if the cost of errors were not so high. In our opinion, such is the explanation (but 
not justification) of the present low level of solution of engineering optimization 
problems. 

This book has been primarily aimed at perception of the essence of engineering 
optimization problems, starting from the formulation and finishing with the 
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solution. Also we desired to demonstrate the efficiency of the new concept by 
considering numerous examples. In solving engineering optimization problems 
we prefer to be optimistic and believe that in the foreseeable future the term 
optimal design will be replaced by simply design. In practice, this will mean 
designing and manufacturing Pareto optimal automobiles and ships, machine 
tools and locomotives, machining centers and flexible manufacturing systems, 
robots and manipulators, tractors and combine harvesters, etc. Who would care 
for a less than optimal design? 

Finally, Aristotle justly remarked that "one can't choose from the impossible." 
Through this book we are hoping to help make the choice possible. 
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Addendum 

Uniformly Distributed Sequences and Nets in 
Multidimensional Parameter Space 

A-I. Uniformity Characteristics of Distribution of Points in 
N-Dimensional Cube 

In Section 1-2 the necessity of using uniformly distributed sequences (UDS) for 
solving the problems being considered was discussed. A definition has been 
given of the distribution uniformity for a sequence of points in a multidimensional 
space. The simplest properties of UDS have been stated therein. Here we shall 
attempt to study in more detail various properties of uniformity and consider 
new constructions of limited-length UDS (nets). The latter possess a number 
of interesting properties of uniformity that single out them from other known 
sequences. 

Note that the well-known Weyl theorem was of great importance in developing 
the theory of uniform distribution of sequences 17 (Kuipers and Niederreiter 1974). 

Theorem 1 (H.Weyl). Let/(X) be a function integrable in the sense of Riemann. 
Then {Xi} is a uniformly distributed sequence ~18 the relationship 

N 

lim "Z ftXi)= f ftX)dX, (A-I) 
N-->oo i=1 Kn 

is satisfied where Kn is a unit n-dimensional cube. 
This formula opened a new direction in the theory of quadrature formulas. 

The use of uniformly distributed sequences appeared to be rather promising for 

17The results hereafter given wiIhout references were obtained by Matusov. 

18Symbol ~ means "in order to ... it is necessary and sufficient that." 

192 



www.manaraa.com

Addendum I 193 

the multidimensional integral calculations. In many cases it is more efficient 
than the use of other methods. 

There exist various characteristics of uniformity for distribution of point se­
quences in multidimensional spaces. 

Discrepancy 

Let us consider in K n an arbitrary net consisting of N points X l , ... ,XN. An 
arbitrary point X within Kn will be bring in correspondence with a parallelepiped 
llx with its faces being in parallel with the coordinate planes and with its diagonal 
being OX (0 denotes the origin of coordinates). Let us define Vrrx as the volume 

ofllx. 

Definition. A discrepancy of points X l , ... ,XN is an upper bound 

D(Xl, ... ,XN)= sup ISN(llx)-N·Vrrxl 
XEK" 

where S~llx) is the number of points belonging to llx. 

(A-2) 

The smaller D is, the more uniform the location of points X l , ... ,XN, ... in K n 

should be considered. It can be easily seen that D(X 1, ... ,XN)$.N always. 
There are also other characteristics of uniformity. 

A-2. PT-Nets and LPT-Sequences 

In this section we shall start to study the properties of uniformity of the known 
P'T-nets and LP'T-sequences (Sobol' 1969). 

Let us introduce an equivalent definition of the distribution uniformity. 
The sequence of points X l , ... ,XN is distributed uniformly in K n if for any 

binary parallelepiped llkCKn, the following condition 

is satisfied. 
The aforementioned definition only allows such "good" domains as binary 

parallelepipeds. Let us give an appropriate definition. 
Let us consider some intervals being binary if they can be obtained by dividing 

an interval [0,1] into 2m equal parts, where m=0,1,2, ... . For the sake of 
definiteness, consider so-called closed-open intervals, containing only the left 
endpoint, except in the case when the right endpoint is equal to 1. If the right 
endpoint is equal to 1, then the interval is closed (contains both endpoints). By 
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this definition, the sum of all the binary intervals of the length 2-m constitutes 
the interval [0,1]. 

For example, the following intervals are binary: [0,1], [0,112),[112,1], 
[0,114), [114,112), [112,3/4), ... . Incidentally, intervals such as [114,3/4), or 
[5/8,7/8) are not considered binary. 

Let us number all the binary intervals and denote them lms, that is, s= 1,2, ... ,2m. 
Let K=(K}, ... ,Kn). We shall identify as a binary parallelepiped OK a set of 
points with coordinates (x}, ... ,xn) where Xj E IKj at s=I,2, ... ,2Kj. 

It is obvious that any such binary parallelepipeds belong to a unit n-dimensional 
cube Kn. 

We shall refer to a net consisting of N=2v points of the cube Kn as a Po-net if 
any binary parallelepiped with a volume of liN contains one point of this net. 

It is not difficult to prove that the points of the Po-net are uniformly distributed 
in Kn. Unfortunately, as has been shown in Sobol' (1969), such nets exist only 
at n= 1 ,2,3. In a four-dimensional cube it is impossible to construct a Po-net 
with a number of points N;?4. Therefore, the requirement to the distribution of 
net points has to be relaxed so that a more general definition might be introduced. 

Definition (Sobol' 1969). A net consisting of 2v points of the cube Kn is referred 
to as a PT-net if any binary parallelepiped OK with the volume VrrK=2TJ2v 
contains 2T points of the net. (In this case, it is always supposed that v>r.) 

PT-nets exist in Kn at any n, but the values of'T, however, grow invariably 
with the growth of n. The projection of the points consisting of PT-net in Kn 

into any s-dimensional face of the cube Kn forms an s-dimensional P T-net. 
Moreover, this s-dimensional net may appear to be a PT,-net with 'T'<'T. 

How exactly can this definition reflect the process of the most uniform distribu­
tion of points? The following definition seems to be more appropriate. 

We shall refer to an intervallllqo,l] as quasi-binary if it consists of one or 
more binary intervals. 

A parallelepiped OK is quasi-binary if its edges are quasi-binary intervals. 

Definition. A net consisting of 2v points of the cube Kn is referred to as p-net 
if any quasi-binary parallelepiped OKCKn with a volume pJ2v contains p points 
of this net. 

Theorem 2. For any dimensionality n of the cube Kn there exist p-nets with a 
length 2v, 2v>p if and only if p=PI'2T (where PI is an odd number, and'T is a 
natural number). 

Proof. Let us consider an arbitrary quasi-binary parallelepiped OK with a volume 
pl2v, where 2v is length of a net in Kn. This parallelepiped is determined in the 
following way (in binary notation) 
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where k=l, ... ,n; ILI+ ... +ILn=v-l, 1"2:.0. Let A(k)=O,a~k) ... a~:. Then 
n 

II A(k)- 12v-V A b ·<2v · b· .. .--P - UK. ny num er 1- 10 mary notation IS I-etet-l ... ev ... el. 
k=1 

Let US denote the coordinates of point P(i) (with number i) within the net through 
k(.) Le k(·)-O (k) (k) . h . b· b Al I pl. t P 1 - ,gil ... g'j ... IS t e appropnate mary num er. so, et 

B~kk)=O. b~k) ... b~:+O. O ... 1, 
1 __ 1 

ILk 
n 

in the binary notation B~~ = O. b~'%k· .. b~1mk. 
The condition that P(i) belongs to a given parallelepiped can be written as 

follows: g~)=b)!/k' l~j~ILb l~k~n. 
It will be shown that the coordinates p\i) of the point P(i) can be defined by 

means of a so-called direction matrix [u~)] in the following way 

(k)_ (k) (k) (k) 
gij -elulj * e2U2j * ... * etutj 

where * is modulo 2 addition operation (hl=O, O*l=hO=l, 0*0=0, and the 
result of addition is not transferred to the next digit. Thus, for example, 
0.101 hO.llOl =0.011). Having substituted the latter expression to the left-hand 
side of the system, we shall obtain p systems of linear equations with v unknowns 

(k) (k)-b(k) (k) (k) 
elu lj * ... * evuvj - }mk * ev+luv+lj * ... * etutj , (A-3) 

l~j~ILb l~k~n, l~mk~p· 

Note that P(i) belongs to IlK if and only if it belongs to one of the p binary 
parallelepipeds, that is, when one of the given systems of linear equations is 
satisfied. 

The volume of IlK might be equal either to pl2v , or to P l l2v - 1 (if p=p,i) 
where PI is an odd number. 

In the first case, each of the systems (A-3) describes the pertaining of a point 
to a binary parallelepiped having a volume (l/2t, and consists of v equations. 
Such a system has either a unique solution if the coefficients on the left-hand 
side of equations (A-3) form a nonsingular matrix, or else no solutions at all. 
If this matrix is nonsingular, then one point gets into each binary parallelepiped 
having a volume (lI2t. But, as was mentioned, this is impossible when n"2:.4. 

In the second case, each of the systems (A-3) contains v-I equations. Such 
a system has either no solutions or it has i solutions if the matrix of the coefficients 
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on the left-hand side of these equations has the rank v-I. If the latter condition 
is satisfied, it means that a Prnet exists in Kn. In other words, the existence of 
p-nets is reduced to the existence of PT-nets where T~/, p=P I 2/. 

Let us consider an arbitrary sequence of points Q .. Q2, ... ,Qi, ... ,belonging to 
Kn. Let us identify as a binary part of the sequence a set of terms Qi, whose 
numbers i satisfy an inequality of the following form 

k2S~i«k+l) ·2s (k=O,I,2, ... ; s=I,2, ... ). 

For example, parts O~i<8; 8~i<16; 16~i<24, ... are binary, whereas part 
4~i<16 is not binary. 

Definition (Sobol' 1969). A sequence of points Q .. Q2, ... ,Qi, ... within the cube 
Kn is referred to as an LP T-sequence if any of its binary parts containing at least 
2T+ I points represents aPT-net. 

Estimate of Discrepancy 

Let us denote through [~J. as usual, a binomial coefficient so that [~] 
= m(m-l) ... (m-k+ 1)/1·2 .. . k. 

Theorem 3 (Sobol' 1985). For any P T-net in Kn consisting of N';?2n- 1 +T points, 
the following estimate is valid: 

(A-4) 

Theorem 4 (Sobol' 1985). For an arbitrary initial part of any LP T-sequence in 
K n containing at least 2n - I +T points, the following estimate holds: 

(A-5) 

where VI =E(log2N) is the integer part of the logarithm of N. 
From the last theorem it follows that 
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as N~oo. This means that D/(lnnN)<const. 
It follows from this theorem that the LP T-sequences are distributed uniformly 

in Kn. 
Let us now tum our attention to the construction of LPT-sequences. 

DP-Sequences 

Let us select an infinite triangular matrix of the following form 

which will be referred to as a direction matrix. Elements Usj underlying the main 
diagonal may be zeroes or unities. 

To specify a matrix (USj) is equivalent to specifying the sequences of dyadic 
fractions (in binary system) 

which are referred to as direction numbers. 
What is termed as a sequence of dyadic type, or DP-sequence, is a sequence 

of numbers r(O), r(1), ... , r(i), ... calculated in accordance with the following 
rules: 

1. r(O)=O; r(2S ) = Vs+ I 

2. If 2s:=;i<2s+ l , then r(i)=r(2S ) * r(i-2S ) where * means a digit-by-digit 
modulo 2 addition in binary system. 

It is not difficult to prove that rules 1 and 2 are equivalent to the following 
definition: If in a binary system i=em ... e2e" then r(i) = el VI * e2V2 * ... * emV m. 

Lemma (Sobol' 1969). A DP-sequence r(O), r(I), ... ,r(i), ... corresponding to a 
direction matrix (vsj) is a one-dimensional LPo-sequence consisting of various 
dyadic fractions. 

Monocyclic Operators in a Field GF(2) 

A field GF(2) consists of two elements: 0 and 1. The rules of multiplication are 
usual and the rules of addition are as follows: 



www.manaraa.com

198 / Multicriteria Optimization and Engineering 

0+0= 1+ 1 =0, 0+ 1 = 1+0= 1. 

Let us consider a linear difference equation of order m with constant coeffi­
cients: 

LUi=O (A-6) 

where the difference operator L is defined by the following expression 

Here, all Ui and ai belong to GF(2). 
Let us define the solution of equation LUi=O as an infinite sequence 

definite at -oo<i<oo and satisfying this equation at every i. 
Each solution is determined uniquely by assigning the group (u1. ... ,um), since 

all the values of Um+ I, Um+2, .. . and all the values of Uo, u- 1. U-2," . are calculated 
successively by means of equation (A-6): 

Ui+m = am-IUi+m-I+.·.+alui+I+Ui, i=I,2, ... 
Ui = Ui+m+am-Iui+m-I+ ... +alui+1. i=O,-1,-2, ... 

Since only 2m various groups (u1.'" ,um) exist that consist of zeroes and unities, 
then only 2m solutions exist, including a trivial one, W= O. 

Let us considerthe groups (u1.'" ,um), (U2 •... ,Um+ I), (U3, 00. ,Um+2),oo . . Among 
them, a group will certainly be found that coincides with one of the groups 
already considered. Therefore, any solution of equation (A-6) is periodical, its 
period not exceeding 2m-I. 

Definition. An operator L is referred to as monocyclic if equation LUi=O has a 
solution with the least period 2m-I. 

Construction of LP T-Sequences 

Let us come to an agreement that the direction matrix (vsj) pertains to an 
operator L of mth order if the following two conditions are satisfied: 

1. Every one of the first m columns of this matrix is a solution of the 
equation 
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2. Every one of the subsequent columns of the matrix is a solution of 
nonhomogeneous equation 

LUij=uij-m at m<j<oo. 

We shall also mention that a DP-sequence corresponding to such direction 
matrix (\lsj) belongs to the operator L. Since the elements Usj underlying the main 
diagonal in the first m rows can be selected arbitrarily, a number of various DP­
sequences can pertain to the same operator. 

Theorem 5. (Sobol' 1969). Let L1, .. .Ln be various monocyclic operators with 
their orders equal to ml, ... ,mn respectively. Also, let qj(1), qj(2), ... , qj(i), ... 
be some DP-sequence pertaining to the operator Lj • Then, the sequence of points 
Q], Q2, ... ,Q;, ... with coordinates 

(A-7) 

is an LP T-sequence in K n with 

n 

T= 2: (mj - 1). 
j=2 

A first coordinate may formally be defined as pertaining to the operator Lu;=ui+ I. 

Values of T. It is seen from the last formula that in order to reduce T, we should 
select the monocyclic operators Lj with orders mj as low as possible. The last 
theorem has been used to construct the LPT-sequences for which T=O at n= 1,2 
and T = 1 at n = 3. These values of T have been proved to be minimum for the 
LPT-sequences. When n=4, we obtain T=3. In general, as ~oo 

T=O (nlog2n). 

The estimates obtained here show that asymptotically all the LP T-sequences 
can be ascribed to the best ones. However, in practice it would be important 
that the uniformity of location is set up rapidly and not only as N~oo. For this 
purpose some additional requirements have been formulated. 

A-3. Additional Properties of Uniformity of LP T-Sequences 

Most important in solving specific problems is to ensure the uniformity of initial 
parts of the sequences used. This section is devoted to consideration of the 
corresponding properties of uniformity. 

Property A. Let us divide a cube K n by planes Xj = 112 with j= 1,2, ... ,n into 
t=2n octants that will be considered as binary parallelepipeds. Let us split the 
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sequence of points QI, Q2, ... , Qi, ... into binary parts that have their lengths 
equal to 2n: 

(A-8) 

If for any of these parts all the points pertain to different octants, then we can 
say that the sequence possesses the Property A. 

Theorem 6 (Sobol' 1976). The sequence Q" Q2, ... , Qi, ... constructed in the 
previous theorem possesses Property A if and only if the (nXn)-determinant 
composed of the first columns of all direction matrices is equal to 1 (mod 2). 

This theorem allows constuction of LP ,.-sequences possessing Property A. 
However, the following question remains open: Is it possible to use the operators 
of the lowest orders as the sequence of operators {Lk}? This question is justified 
by the fact that in precisely this case the value of 'T will be minimum, and this 
will improve all the characteristics of uniformity. In order to answer the question, 
let us consider the following statements. 

Let L" L2 , .•. ,Ln be various monocyclic operators with their orders being m" 
m2, ... ,mn , respectively. 

Lemma 1. Let qj(i) in (A-7) be a DP-sequence corresponding to all monocyclic 
operators L" ... ,Ln of the lowest orders. Let m be the order of operator Ln. Then, 
the following inequality holds 

m(m+l) m 
n+ 2 <2, atm::::=5 (A-9) 

Proof. We shall prove this by induction with respect to m. When m=5, the 
inequality holds, since in this case the maximum value of n is equal to 13 
(Sobol' 1969). Let for some value of m, inequality (A-9) take place for any n 
corresponding to this m. Let us prove that at any n corresponding to m+ 1, a 
similar inequality will be satisfied. Taking into account that the number of 
monocyclic operators of the (m+ l)tb order is equal to <l>(2m-l)/(m+ 1) (where 
<l>(k) is the Euler number-theoretic function equal to the quantity of natural 
numbers less than k and relatively prime with k), we shall prove now that 

<l>(2m-l) (m+1)(m+2) 2m+1 
n+ m+l + 2 < . 

Let us represent this inequality in the following form 

,I,.(2m+l-l) (m+l)m 
n+'I' m+l + 2 +m+l<2m+1 
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All that remains is to compare it with (A-9) to show that 

i.e., 

.h(2m+ 1 1) 
...:.."'--'----:--...:..+ + 1 <2m 

m+I m , 

4>(2 m+l_I)+(m+ 1)2«m+ I)2m 

4>(2m+1-I)+(m+ I)2<2m+l_I +(m+ I)2«m+ I)2m 

Finally,. we have that (m+I)2-I«m-I)2m. 
Thus we have come to an obvious inequality, which is true at m:?:::3. 
Let us denote through men) the order of a monocyclic operator standing on 

the nth place in the sequence of all monocyclic operators taken in succession. 

Lemma 2. Let us consider n-I sequences of elements {u/k )}, k= 1, n-I, i>O, 
of field GF(2). Let a sequence consisting of unities belong to this set, and let 
the determinant be 

(A-lO) 

Let us consider the monocyclic operator Ln with the order m:?:::m(n), m:?:::5. 

Then, such a solution {u/n)} of the operator Ln exists that the determinant is as 
follows 

(A-H) 

Proof. Let us assume the opposite: Whatever the first m values of the operator 
Ln solution are selected, the determinant in (A-ll) is equal to 0 (mod 2). Since 
the columns in (A-lO) are linearly independent, the first n-I of the elements in 
the last column in (A-ll) may be expressed uniquely through these columns. 
But by virtue of the aforementioned assumption, the last element of the nth 
column in (A-ll) must be expressed in the same manner through the elements 
of the nth row. The latter belong to the appropriate columns in (A-II), no matter 
what first m values of the last row are selected in (A-II). That means we have 
for the last row 
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n-1 
U~n)= L CkU~n), Ck E {O,I}, or 

k=1 

(A-12) 

for arbitrary first m values on this row beginning with unity. This implies that 
any solution of monocyclic operator Ln is a solution of a linear difference operator 
with the order n-io 

n-1-iO 

L*(Ui)=Ui+ L Ci+kUi+k+Ui+n-io 
k=1 

(A-13) 

Indeed, let {ufn)} be a solution of monocyclic operator Ln. Then, if any part of 
this solution beginning with 1 is taken as the last row in (A-H), we shall obtain 
(A-12). Let us take an arbitrary part having a length of n and beginning with 
zero. Since the first m values can be selected arbitrarily, we shall present this 
part as a sum of two parts having the same length and beginning with 1. And 
because (A-12) is satisfied for these parts, then (A-I2) is also true for the given 
part that begins with O. This means that with any initial values of u~n), u~n), ••. 

u!::) we shall have satisfied (A-12). And this also implies that any solution of 
monocyclic operator Ln of the mth order is a solution of a linear difference 
operator L *(Ui). Since it is so, the polynomial corresponding to L *(Ui) must be 
divisible by the polynomial corresponding to the operator Ln. 

Let 

n-i n-i -1 I 
X o+an-io-1X ° + ... +a1x+ (A-14) 

be a polynomial, where all ai and x pertain to the field GF(2), corresponding to 
the operator L *. We shall show now that if a polynomial corresponding to Ln , 

such as 

(A-I5) 

is a divisor of the polynomial (A-I4), then it will also be a divisor of some 
polynomial of a larger degree that has no monomial~ of xk type, where ks,m, 
excluding 1. Indeed, let (A-I4) contain some monomial xk, where ks,m (i.e., 
ak=I). By multiplying (A-I4) by (xk+l) we obtain a polynomial of the 
(n-io+k)th degree, which has its coefficient equal to zero at xk, that is, ak=O. 

We may treat similarly any term that has its degree not greater than m. So 
we shall obtain a polynomial that has the degree of its penultimate term higher 
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than m, whereas the maximum degree of that polynomial will be equal to 
n-io+m(m+ 1)/2, that is, 

(A-16) 

If the polynomial (A-IS) is a devisor of the polynomial (A-I4), then it must also 
be a divisor of the polynomial (A-I6). On the other hand, the polynomial (A-
16), like the polynomial (A-I4), contains an even number of terms, since, in 
accordance with this lemma, one of the rows of the determinant (A-ll) consists 
of unities. Therefore, the polynomial (A-I6) can be represented as a sum of 
binomials 

. m(m+l) 
(xn- IO+-2-+ 1)+ ... + (xm+p + 1) (p>O) (A-17) 

Let us divide each of these binomials by the polynomial (A-IS). Since the 
polynomial (A-IS) corresponds to the monocyclic operator Ln of the mth order, 
then the polynomial (A-IS), according to Sobol' (1969), is also a divisor of the 
binomial (x2m- 1+I), but at the same time it is not a divisor for any binomial 
(XS + 1), where s<2m - 1. But by the virtue of Lemma 1 the order of the polynomial 
(A-I6) is less than 2m-I. Therefore, having divided (A-I7) term by term by 
the polynomial (A-IS), we shall obtain the following: 

(xm+ ... +alx+ 1)(xP1 + ... +XP1-Cl)+xkl+ ... + 1 + ... 
+(xm+ ... +al x+ I)(xPk+ ... +XPk-ck)+Xkl+ ... + I 

=(xm+ ... +al x+ 1)(xc+ ... +xd)+xk+ ... + 1 

where kj<m, k<m. The remainder left after division will be xk+ ... + 1 #0 
(mod 2), since the remainder left after the division of each one of the binomials 
(A-17) by the polynomial (A-IS) will contain 1. There is an odd number of such 
binomials so that the total remainder will also contain 1. Thus, the polynomial 
(A-I6) is not divisible by the polynomial (A-IS). And we have obtained a 
contradiction. 

Theorem 7. There exist such initial conditions for the first column of the direction 
matrices that the sequence of points Qi= (ql(i), ... ,qn(i» constructed from the 
sequence of all the monocyclic operators taken successively possesses Property 
A for any n. 

Proof. We shall prove this by induction. It is easy to verify that this theorem 
is true up to n=7 (m(8)=S). Let it be true also at some n>7. This means that 
the conditions of Lemma 2 are satisfied. And if we consider any monocyclic 
operator Ln+ 1 that has its order the same as the order of Ln or larger by unity, 
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then a part having its length equal to n+ 1 and beginning with 1 will, by virtue 
of Lemma 2, be found within the solution of this operator, such that 

1 (I) (1) (1) 
,U2 , .... , Un ,Un+1 

1 (n) (n) (n) 
,U2 , .... , Un ,Un+ I 

=1 (mod 2) (A-I8) 

1 U(n+ I) u(n+ I) u(n+ I) 
, 2 , ... , n ,n+l 

With this, all the comer determinants (A-I8) are also equal to 1 (mod 2). As 
follows from Sobol' (1976), this proves that the theorem is true also for n+ 1. 
Thus, the theorem is proved. 

Property A'. Let us draw 3n planes, Xk= 114, 112, 3/4, k= I,n. They divide the 
cube Kn into 2n smaller cubes. In accordance with Sobol' (1976), we shall say 
a sequence (A-7) possesses Property A' if within any of its binary parts having 
the length of 22n all the points will pertain to different smaller cubes. 

So a sequence (A-7) possesses Property A' if and only if the determinant 
consisting of the first two columns of the direction matrices is equal to 1 (mod 
2). 

Just like in the case with Property A, a question arises as to whether all the 
monocyclic operators can be used in succession so that the sequence (A-7) of 
points corresponding to them would possess Property A' at any n. 

Remark. By analogy with Lemma 1, it will not be difficult to show that the 
following inequality should take place 

m(m+l) m 
2n+ 2 < 2 , m2=6. (A-I9) 

Theorem 8. There exist such initial conditions for the first two columns of 
direction matrices that the sequence of points Qi=(ql(i), ... ,qn(i)) that is con­
structed from the sequence of all the monocyclic operators taken in succession 
for any n possesses Property A'. 

Proof. The theorem will be proved by induction by analogy with Theorem 7. 
We shall verify if the theorem is true for all values of n, such that m=m(n)<6. 
Now let it be also true for some value of n(n> 13, m(n»5 (Sobol' 1969). 

Let us prove that this theorem is also true for n + 1. 
Thus, we suppose that 

(1) (1) 
uI,I, ... , U2n,I 

(1) (1) 
UI,2, ... , U2n,2 
................ =1 (mod 2) 

(n) (n) 
uI,I, ... , U2n,I 

(n) In) 
UI,2, ... , U2n,2 

(A-20) 
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as well as that all the comer detenninants of even dimensionality are equal to 1 
(mod 2). Now we shall consider an arbitrary monocyclic operator Ln+I of the 
same order that the order of the operator Ln if Ln+ 1 ~ Ln-k> where k<?O (here, 
Ln- k is either one of the operators that has some parts of solution with length 
of 2n, included in (A-20), or else an operator whose order is larger by 1 than 
that of Ln). In view of the remark given previously and by analogy with Lemma 
2, it is possible to make a conclusion that for some parts of the solution of a 
monocyclic equation with length of 2n + 1, corresponding to the operator Ln+ 1 

and beginning with 1, the following equality holds: 

(1) (1) (1) 
Ul,I, ••• , U2n+I,I, U2n+I,I 

(1) (1) (1) 
U1,2, ••• , U2n,2, U2n+I,2 

u\~L •.• , U~':/.I' U~"j+I.I =1 (mod 2), (A-21) 

U\~~, ... , ufJ:/.2' U~"j+I,2 
(n+ 1) (n+ 1) (n+l) 

Ul,I , ••. , U2n,I ,U2n+l,I 

Now we shall consider the following detenninant: 

(1) (1) (1) 
Ul,I, U2,I,00., U2(n+I),I 

(1) (1) (1) 
ul,2, U2,2,··., U2(n+I),2 

(A-22) 
(n+ 1) (n+ 1) (n+ 1) 

Uu ,U2, 1 ,00', U2(n+ 1),1 
O 1 (n+l1 

, , .•. , U2(n+ 1),2 

Let us show that the initial conditions in the last row can be chosen in such a 
way that the detenninant (A-22) would be equal to 1 (mod 2). In order to make 
sure we shall suppose the opposite, that the detenninant (A-22) would be equal 
to 0 (mod 2) for any choice of the last row beginning with 0 or 1. Let us show 
that any solution of the operator Ln+ 1 will be a solution of a linear difference 
operator L * of the [2(n + 1) - l]th order where I> 1. In other respects this theorem 
is to be proved similarly to what has been done in the proof of Theorem 7. 

Since the detenninant (A-21) is equal to 1 (mod 2), whereas the determinant 
(A-22) is equal to 0 (mod 2) (as is supposed), this implies the following. The 
last row in the detenninant (A-ll) satisfies the solution of some linear difference 
operator L* of the [2(n+ I)-11th order regardless of initial conditions beginning 
with 0 and 1. The last row of the determinant (A-22) is the solution of Ln+l' If 
we take any two parts of this solution that have their length equal to 2(n+ 1) and 
begin with 0 or 1, then their sum is a part satisfying the solution of the operator 
L * as well. This means that any part of the solution of the operator Ln+ 1 that 
begins with 0 and has a length of 2(n+ 1) is also the solution of the operator L*. 
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This solution is satisfied by the penultimate row of the detenninant (A-22) that 
begins with 1. The same row is also a part of the solution of the operator Ln+ I. 

Also, that is why any part of the solution of L n+1 having a length of 2(n+ 1) 
and beginning with 1 will satisfy L * as well. (This is due to the fact that it can 
be represented as a sum of the penultimate row and some part of the solution 
beginning with 0.) Thus, any solution of the operator Ln+1 is also a solution of 
the operator L *. So this theorem is thereby proved. 

Now we shall consider another very important additional property of uni­
fonnity. 

Property B. As has been assumed earlier, let K n be a unit n-dimensional cube, 
where O:::;xk:::;l, k=l,n We shall fix some io, such that l:::;io:::;n. Let us divide 
the cube Kn by planes Xk= 112, k~io into 2n- 1 smaller multidimensional cubes. 
Let us carry out the same operation for all other fixed io. In total, we shall receive 
n 2n- 1 smaller cubes. 

Let us consider an infinite sequence of points belonging to the cube Kn: 

(A-23) 

Definition. The sequence (A-23) possesses Property B if each one of the n 2n - 1 

smaller cubes considered contains one and only one point from a binary part of 
this sequence taken arbitrarily and having a length of 2n - l . (This definition has 
been proposed by Sobol'.) 

In a similar way, we may consider the division of the cube K n into smaller 
cubes that have their two coordinates Xio and Xjo varying so that O:::;Xio:::; I and 

O:::;Xjo:::; 1, respectively, whereas all the other Xk belong to the interval O:::;Xk:::; 112 

or 1I2:::;Xk:::; 1. 
With different io and io we shall obtain n(n-l)·2n- 2 smaller cubes. If each 

one of these smaller cubes possesses one and only one point belonging to any 
binary part of the sequence (A-23), which has its length equal to 2n - 2 , then we 
shall say that the sequence (A-23) possesses Property B(2). In a similar way we 
can define Property B(k), where k:::;n-1. 

Let us assume that Qi=(ql(i), ... , qn(i)) is an infinite sequence of points whose 
coordinates l(i) are DP-sequences, whereas "Ware the direction matrices that 
generate them. 

It is easy to prove next statement. 

Statement. There exist such sequences Qi that possess both Properties Band 
B(n-I) for any n. Property B(k), where 2:::;k<n-1 is not met by any sequence 

Qi. 
If U~~)I = 1, then it can be easily seen that Property B(n-I) is met. 

Corollary. Ifu~~)1 = 1 (in particular, when the sequence ofQi is an LPT-sequence) , 
then Property B is met, provided that n is an even number. 
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Also, it is not difficult to see that there is such a sequence of direction matrices 
that the corresponding sequence of Qi will possess Property B at every value of 
n. Indeed, we shall put for every n 

n-I 

u~~{= 2: u~~l where I:Si<n-l, 
k=1 

whereas 
n 

urn) = '" u(k) + 1. n,l LJ n,l 
k=1 

(A-24) 

By analogy with introduction of Property A', we can introduce Property B', 
B' =(BI ), or (Bk) , , I:sk:Sn-l. In this case, as it was with Property B, we deal 
with distribution of the points taken from a binary part of the sequence Qi with 
a length 22(n-k). Incidentally, it is not difficult to prove the following statement. 

An n-dimensional sequence of points Qi that possesses Property (Bk) , exists 
if and only if 

(A-2S) 

Do multidimensional sequences of points exist that possess Properties A and 
B simultaneously? 

The answer to the question is in the following statement for which proof is 
not presented because of its simplicity. 

If all u~~{ are not identically equal to 1, then there exists such a sequence of 
direction matrices that the sequence of Qi possesses Properties A and B simultane­
ously at every value of n. In this case, for any n, 

n-I 

u(nJ=O I:SJ'<n-I U(n.!.1 = 1 urn) = '" uU) + 1 J,I, , n ,I , n,l LJ n,l (A-26) 
j=1 

Otherwise, if U~~)l = 1 at all values of k, then it is easy to show that such a 
sequence of Qi can be found that at every n it possesses Property A and at every 
even n it possesses Property B. In this case q(k)(i) can be selected so that it will 
belong to some monocyclic operator Lk of the mth order. 

A question arises as to whether this statement can be proven if m is the order 
of operator Lb where m=m(k), that is, if all the monocyclic operators are taken 
in succession. The following statement answers this question. 

Let Qi = (q(1)(i), ... ,q(n)(i» be an infinite sequence of points in the cube Kn, 

q(k)(i) corresponding to all the monocyclic operators of the lowest orders. Then 
the sequence of Qi cannot possess Properties B and A simultaneously at even 
n~I2. 

The proof can be made by the reader without any difficulties. 
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Construction of New LPT-Sequences 

If a direction matrix (Vij) is such that all of its comer determinants are equal to 
1 (mod 2), then the DP-sequence determined by this matrix will be an LPo-
sequence. 

Can these sequences determining the values of various coordinates of multidi­
mensional points be used to construct an LPT-sequence? 

The following results enable us to extend Theorem 4 of Sobol' (1969), where 
the construction of an LPT-sequence is given, to our case. 

Let L be a monocyclic operator of the mth order. Now we shall consider the 
sequence of operator degrees, that is, L, L2, ... ,Ln, ... . To each operator C in 
this sequence we put in accordance its m linearly independent solutions 

{uW, ... , uW, ... }, ... , M':.{ , ... , u~, ... }, (A-27) 

where any solution of operator L n is not a solution of operator L n-I. In addition, 
the first nm, l:5n:5 oo , elements in each ofthe sequences (A-27) should be selected 
so that in the following matrix 

(I) (I) (n) (n) 
U", ... ,Ulm, ... ,U11,·· .,Ulm 

(I) (I) (n) (n) 
Uki , ... ,Ukm,···,Ukl , •.. ,Ukm 

(A-28) 

all the comer determinants would be equal to 1 (mod 2). Let i p be an arbitrary 
degree of a monocyclic operator i different from L. 

Lemma 1. The operators i p and Lk do not possess common solutions. 

Proof. Indeed, let {u;} be one of the sequences in (A-27) such that L *(u;)=O. 
So, if iP(u;)=O would take place, then Lk-lip(u;)=ipLk-1 (u;)=O. But it is 
impossible because Lk-I(u;) is a nontrivial solution of monocyclic operator L. 

Thus, by Lemma 4 of Sobol' (1969), {u;} cannot be a solution of operator i p . 

Lemma 2. If the operator Lip is applied to any of the n(n:5m) linearly independent 
solutions of operator L k, then we shall obtain n linearly independent solutions 
of operator L k-I . 

Proof. Let us at first show that i p preserves the linear independence of the 
solutions of operator Lk. We shall apply the operator {p to n solutions of Lk. 
Since i p is a linear operator, then the linear dependence of the resulting solutions 
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n n 

implies that Lp[ ~ u~)]=O, where i= r,oo. But ~ u~) is not a trivial solution of 
j=l j=1 

Lk, since n solutions selected are linearly independent. And since the solution 
of L k cannot be a solution of Lp, the considered solutions are linearly independent. 

Now we shall apply the operator L to these solutions of operator Lk. It is clear 
that in this way we shall obtain n solutions of operator L k-I that are linearly 

n n 

independent. Actually, the opposite implies that ~L(u~»)=L(~u~»=O. The 
j=1 j=1 

sum ~u~j) is not a solution of operator L since the matrix (A-28) contains all of 

n 

the m linearly independent solutions of operator L. If ~ U~k) would be a solution 
j=1 

of L, then it should be expressed linearly through these m solutions. But this is 
in contradiction with the condition that all the comer determinants of the matrix 
(A-28) are equal to 1 (mod 2). 

Theorem 9. Let L 1 , ..• ,Ln be various monocyclic operators that have orders equal 

to mh ... ,mn, respectively. Bring a matrix (,,~.l)) similar to that of (A-33) in 

correspondence with every operator Lk and let Qi be a sequence of points with 
the coordinates defined previously by these matrices. Then Qi = (qIU), ... ,l/U» 

n 

is an LP T-sequence in Kn with the value of T = ~ (mk -1). 
k=2 

Proof. In accordance with the proof of the aforementioned Theorem 4 of Sobol' 
(1969), an arbitrary binary part of sequence with a length of 2v is a PT-net ~ 
the rank of the matrix 

(A-29) 

consisting of V-T columns of direction matrices corresponding to various mono­
cyclic operators is equal to V-'T. 

We shall use JJ.k to denote the remainder of the division of JJ.k by mk so that 
JJ.k=Ptmk+JJ.'k (JJ.I+ ... +JJ.n=v-'T, see Theorem 2). 

Let PI ~ 1. We shall keep in the matrix (A-29) the first ml rows without 
changes, whereas all the others will be replaced by linear combinations of rows 
in accordance with the application of the operator LI to rows. Thereby we shall 
obtain an equivalent matrix 
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V(I·I) V(J,/I): 1.1 , ... , l.mt : , .................... , 
(1.1) (1,11): 

Vml.I,,··,Vml.ml : 
-----------------~--~i~i)-----:(~d~)------'---------

: VI.I , ... , VJ,ILI-ml , 

W .. 
I,] 

(A-30) 

° : ............................. : LIW·· 
: ,(1.1) ,(I.dl ) : I,] 
: Uv-ml.l,· .. 'lJv-ml,~l-ml : 

In the upper left comer, according to the condition of the theorem mentioned, 
there is a nonsingular matrix. It is not difficult to see that the columns V/Jk) , 
where k=5d"j=5fl.I-m" that are parts of the solutions of operator L" are linearly 
independent. If PI> 1, then in the lower portion of matrix (A-30) we repeat the 
same transformation for PI times. If fl.! >0, then after these transformations there 
will be fl.! columns with elements v;5J,1). We shall move them to the end of this 
matrix. Thus, we obtain the following equivalent matrix 

r---, 
'B l ' ~ ... __ t.... I W .. 

,"---I I,j 

: B1: ______ L __ ~ ___________________________________ ,--------_________ _ 

: '(2.1) . (2.k2) ·(n.l) ·(n.kn)· ,(1.1) ,(1.11) o : VI.I " .. ,VI, 1L2 "",VJ,1 "",VI' lLn : VI ,,,,,VI. ILI , . 
: ......................................... ; ................... . 

(A-31) 

According to Lemma 2, it is so that uY,j·b) (2=5p=5n, 2=5b=5kp) are parts of the 
solutions of operator Lt. By the aforementioned Lemma 4 of Sobol' (1969), the 
columns uf3'lJ, l=5j=5m2, form the following matrix 

B2=[~.~~~~::::::~.~~~~.. ] 
·(2.1) '(2.1) 

Vm2 .1 , ... , vm2 .m2 

with determinant equal to I. 
Applying L2 to a part of matrix (A-31) disposed under the line, we carry out 

transformations similar to the previous ones. We shall move the remaining fl.2 
columns to the end of the matrix. Having made the same transformations with 
all Lk we shall obtain the following matrix 

'B---' : I: 
---~ 

')- ........ 

:Bl: ---:8-2-: . , 
----''''' I 

,, __ .t 

:Bn: 
---------------~--~----------------------------------- ----

o 
: ,(1.1) ,(1,11) ,(n.l) ,(n.I.) 
: VI.I , •.. ,V I.ILI , ... ,v 1.1 , ... ,V I ....... , : ............................................. . 
',(1.1) ,(1.11) ,(n.l) ,(n.I.) 
: V v·.1 , ... ,v v'.ILI'''·'v v·.1 , ... ,V v· ....... 

(A-32) 
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where v' = ,...,'1 + ... + ,...,~ + T, and the elements of matrix in the lower right comer 
are: 

U ,(k:I)=LPI LPk-l LPHI LPn (u(k.l) 
l,J I'" k-I k+I'" n l,J (A-33) 

If all Pk were equal to 0, then the initial matrix would have already had the form 
of (A-32). 

Since j::5,...,,,<mk in (A-33), then LkU'f~I)=O. This means that the columns of 
the right-comer matrix are parts of solutions of monocyclic equations. 

Let among ,...,,, be only s numbers different from zero. We shall designate them 
as ,...,;, where 1 ::5f::5s::5n. All the solutions u'f~l) corresponding to a givenf are 
linearly independent by Lemma 2. Since 

m s s s 

v'= 2: (mk- 1)+ 2: ""'f~ 2: (m.r+""'f-l)~ 2: ml' from Lemma 7 Sobol' (1969), 
k=1 1=1 1=1 1=1 

it follows that all the columns of the right-comer matrix are linearly independent, 
that is, its rank is equal to ,...,; + ... + ,...,~. Hence, the rank of the entire matrix 
is equal to V-To 

The result of this theorem allows construction of LP ,,-sequences of a wider 
class than in Sobol' (1969). This positively influences the additional properties 
of uniformity. These properties must affect the results obtained when these 
sequences are used to solve practical problems. 

Methodfor Calculating the Coordinates of Points of LP,,-Sequences 

Sobol' and Statnikov (1981) provide a table of numerators r51), l::5j::551 , 
1::5[::520. This table can be used to calculate the points Qt with numbers within 
1 ::5i::522o in the cube Kn, when j::5n::551. If points are required that have their 
dimensionality equal to n, then only the first n rows of the table should be used; 
if the number of points to be used is j::5i, where /::520, then use should be 
actually made of the first I columns of that Table (see Table A-I, where 1::516, 
j::520). 

Algorithm. Prior to starting the calculations, one needs to replace table r)l) by 
table v51), V51)=r51)·r l . 

Then, if in binary notation the number of point i is represented as i = em ... el, 
all the Cartesian coordinates of the point Qi = (qi.J, ... ,qi,n) are to be calculated 
using the same formula 

- V(I) V(2) V(m) '--1-qi,j-el J * e2 J * ... * em J ,}- ,n (A-34) 

where * denotes a digit-by-digit modulo two addition in binary notation. It was 
discussed previously in greater detail. 

In Formula (A-34), there is no need to multiply ej by Yj: if ej= 1, then the 
corresponding value of v51) will be included in (A-34), whereas if ej=O, then 
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the corresponding value of VY) should be omitted. Thus, in order to carry out 
the calculations according to Formula (A-34), only logical operations are needed. 

Two Examples 

Now we shall show how this rule can be used in computing the values of 
coordinates for a point in a five-dimensional cube, Q22=(q22,J, ... ,q22,5 ). In 
binary notation, 22 is written as 10110. This means that 
Q22,j= vj2) * V53) * V55). Using Table A-I, we shall obtain the following: 

Q22.1 = 114 * 118 * 1132=0.01 * 0.001 * 0.00001 =0.01101 
Q22.2=3/4 d/8 * 17/32=0.11 *0.101 *0.10001=0.11101 
Q22.3= 114 * 7/8 * 13/32=0.01 * 0.111 * 0.01101 =0.11001 
Q22.4=3/4 * 118 d1l32=0.11 * 0.001 * 0.11111 =0.00011 
Q22.5= 114 * 5/8 * 15/32=0.01 * 0.101 * 0.01111 =0.10011 

Thus, Q22=(13/32; 29/32; 25/32; 3132; 19/32). 

As another example, we shall present the values of coordinates of point Q30 

in the four-dimensional space: Q30 = (15/32; 3/32; 15/32; 9/32). 
As to well-known uniformly distributed sequences (nets), the following re­

marks should be made. Cubic nets (Sobol' 1969) are close to the worst ones, 
regarding the discrepancy D growth order. This indicates that these nets have 
poor distribution uniformity. Hammersley nets (Hammersley 1960) and Halton 
sequences (Halton 1960) are also well-known. The estimate of D for the latter 
is similar to that for LP,,-sequences. In addition, it is worth noting parallelepiped 
nets (Korobov 1959; Hlawka 1962) and perfectly distributed sequences introduced 
by Hlawka. It is especially worth mentioning the work of Faure (1982) in which 
r-nary LPo-sequences that have better asymptotic behavior than LP,,-sequences 
are constructed. 

It is interesting to mention the research (Bretley et al. 1993) in which the 
construction of sequences is given that generalize the r-nary LPo-sequences as 
well as the LP,,-sequences. In this case, the sequences proposed are asymptotically 
of the same order as the r-nary Faure's LPo-sequences. These sequences slightly 
improve the value of index 7, and it is well-known that the smaller the value of 
7, the better the sequence is distributed. However, it should be mentioned that 
the initial parts are not distributed better in Faure's LPo-sequences nor in se­
quences from (Bretley et al. 1993) than those of the LP,,-sequences. 

In the next section, the constructions of P ,,-nets will be given in which the 
value of index 7 is much smaller than that of the LP ,,-sequences. These also have 
initial parts with better uniformity as compared to the LP ,,-sequences, at least 
for the spaces that have their dimensionalities in excess of 10-15. 
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A·4. Nets with Improved Uniformity Characteristics 

The purpose of this section is to construct the P T-nets (Statnikov and Matusov 
1989) that have a substantially smaller value of index T than the LP T-sequences. 

Let n be the dimensionality of a unit cube Kn; n(T) being the maximum 
dimensionality of K n in which aPT-net can be constructed. 

Theorem 10. For an arbitrary n there exist P T-nets having a length of 2T+3, for 
which n(T)=2v - 1-l (T=log2(n(T)+ 1)-2) where 2v is the length of the net, 
v=T+3. 

Proof. Let us consider the correctness of this statement for the nets having the 
length of 2T+3. As has been done earlier, the matrices of direction numbers 
(lJ~y) are used to calculate the coordinates rim of points Qi of the net under 
consideration. As follows from Theorem 4 of Sobol' (1969) in order to have a 
net with a length of 2v, (T<V), being also a PT-net, it is necessary and sufficient 
that the rank of the following matrix 

(A-35) 

is equal to V-T. (This matrix has v rows , J..Ll + ... + J..Ln=V-T columns, where 
J..Li are nonnegative numbers). In other words, it must be ensured that any V-T 

vectors of dimensionality v that are the first columns of the matrices MY) would 
be linearly independent. In doing so, a set of V-T vectors may be made up 

arbitrarily of the first columns of only one, several, or all of the matrices (lJ!Y). 

Let us use the numbers 1,2, ... ,v to designate an arbitrary basis of a v-dimen­
sional vector space of the field GF(2). In this case, v-T=3. 

Now we shall show how linear combination of these vectors can be used to 
construct a matrix of such a type as (A-35) with the aforementioned property. 
Let us consider Table A-2 for the sets of linearly independent vectors: The nth 
row in the table corresponds to the nth dimensionality of the cube Kn. We shall 
assume that the number i designates an n-dimensional vector that has its ith 
coordinate equal to 1, whereas all other coordinates are equal to O. The sum of 
the numbers designates a vector that is the sum of the vectors corresponding to 
the numbers included in this sum. 

Thus, it is necessary to make sure that any triad of the first vectors taken in 
succession from the rows of the aforementioned table are linearly independent. 
(It is obvious that all triads of vectors being in the same row in Table A-2 are 
linearly independent.) For this purpose, it would be sufficient to consider either 
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Dimension 
of cube K" 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

n 
n+l 
n+2 
n+3 
n+4 
n+5 

n+m 

Table A-2 
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Binary vectors for determining 
coordinates of points 

1.2.3 
3.2. 1 
3+2+1.2.1 
4.2. 1 
4+2+1.2.1 
4+3+1.2.1 
4+3+2.2.1 
5.2. 1 
5+2+1.2.1 
5+3+2.2.1 
5+3+1.2.1 
5+4+1.2. 1 
5+4+2.2.1 
5+4+3+2+1.2.1 
5+4+3.2.1 .................. 
K. 2.1 
K+2+1.2.1 
K+3+2.2.1 
K+3+1. 2.1 
K+4+3+2. 2. 1 
K+4+1. 2.1 

K+K-l+K-2+ ...• 2.1 .................. 
the first vectors of any three rows from the table or the first two vectors of any 
one row and the first vector of another row. 

Table A-2 has been constructed according to the following principle. In all 
rows the second position is taken by the same number. 2. This is possible since 
we are interested here only in the triads composed of the first vectors of the 
rows. 

It is not difficult to see that the initial three rows satisfy the requirement 
formulated before. And all the rows. beginning with the fourth, are constructed 
in accordance with the same rule. The first position in the fourth row is taken 
by number 4 (it is impossible to use any sum of the first three numbers in this 
position (Sobol' 1969». Further, on the first position in the following rows we 
shall put a vector that is coded in the following way: It is equal to the sum of 
number 4 and the sum of the initial two numbers standing in each of the previous 
rows. After this, number 5 is put in the first position, since it is already impossible 
to use the sums consisting only of the first four numbers, etc. The table thus 
constructed will be in conformity with our condition. 

Actually, we shall denote the first vector in the ith row through k+a{ +2, 
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where k is the largest number in the sum of the numbers that designates the 
given vector, a{ is the first vector in the jth row, j<i, and a{ ¥- k. 

If we represent now this vector as k+a7+2 where n<i, then we obtain that 
a{ =a7, but this is impossible on the assumption of induction. And if 
k+a{+2=k+a7+2+aT, then we have that a{=a7+aT, but this is also impos­
sible. 

In addition, it is impossible to construct a row that has its first vector coded by 
the sum of number k with other terms different from those as defined previously. 
Actually, one can easily be convinced of this for the seven rows of Table A-2. 
Let us assume that the considered statement is fulfilled for all rows having their 
numbers smaller than some fixed value of i. Then, this vector is k+a=k+a{ +2 
or k+a=k+at j<i, that is, k+a stands either at the first position in some row 
preceding the ith row or else it is the sum of the first two vectors and at{. 

Thus, if a number appears in the record of the first vector of the new row that 
is larger than all the previous ones, we obtain that quantity of rows in which 
it is used is larger by unity than all the preceding ones. It is not difficult to 
see that n(T)=2v- 1-1, where v is the largest number used in the table for the 
given dimensionality (2V is the number of points of the P T-net in the space of 
the given dimensionality). Hence, we have that log2(n(T)+ I)=v-I or 
T=v-3=log2(n(T)+ 1)-2. 

Corollary. When v-T=3, there do not exist PT-nets with T < log2(n(T)+ 1)-2. 

Theorem 11. In the cube Kn there exist PT-nets with a length of 2T+2 for which 
n(T)=2v -I, v=T+2, (T=log2(n(T)+ 1)-2). 

Proof. Let us consider Table A-3. Here, we are interested only in pairs oflinearly 
independent vectors composed of the first taken in succession elements of the 
rows of the given table. Therefore, in order that the linear independence of the 
pairs of vectors would be fulfilled, it is necessary to ensure that any vectors not 
equal to each other are placed at the first position of the rows. The second places 
can be occupied by any vector not coinciding with the first vector, such as, for 
instance, 1. Therefore, with a fixed value of v the first positions of the rows are 
occupied by the 2v-l vectors, that is, we have 2v-I rows. The latter means 
that by the equality of v-T=2, we obtain 

T=log2(n(T)+ 1)-2. 

Corollary. In Kn there do not exist PT-nets with a length of 2T+2 for which 
T < log2(n(T)+ 1)-2. 

Theorem 12. When v-T=4, there exist PT-nets with 
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Dimension 
of cube K" 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

n 
n+l 
n+2 

T= 

Table A-3 

{

n-3 
2,nisodd, 

n-2 
-2-' n is even, 

where n is an arbitrary dimensionality of Kn. 
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1,2 
2, 1 
2+1,1 
3, 1 
3+1,1 
3+2+1,1 
3+2,1 
4, 1 
4+1,1 
4+2,1 
4+3,1 
4+2+1, 1 
4+3+1,1 
4+3+2,1 
4+3+2+1,1 
5, 1 
5+1,1 
5+2,1 
5+1+2,1 
5+3,1 
5+3+1,1 
5+3+2,1 
5+3+2+1,1 
5+4,1 
5+4+1, 1 
5+4+2,1 
5+4+3,1 
5+4+2+1, 1 
5+4+3+1,1 
5+4+3+2,1 
5+4+3+2+1,1 

K,l 
K+l,l 
K+2,1 

K+(K-l)+(K-2)+ ... +2+ 1,1 
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Proof. In order to prove this statement, it is necessary to make sure that the 
tetrads of vectors compiled arbitrarily from the initial elements of the rows taken 
in succession of Table A-4 are linearly independent. In other words, there must 
be some linearly independent vectors of at least one from the following sets: the 
first three vectors of an arbitrary row and the initial vector taken from some 
other row; the first two vectors taken from some two rows; the tetrad of initial 
vectors taken from various rows; the first two vectors taken from one row and 
the first two vectors taken from some other two rows. It is not difficult to ascertain 
directly the correctness of this statement for dimensionalities not exceeding ten. 
Let us consider the Table A-4. In this table, beginning from the tenth row, the 
following regularity is observed. For each couple of neighboring rows in which 
first numbers are odd, we have vectors: 

2K-l, (2K-2)+2, 3,1; 
(2K-l)+(2K-2)+3+ I, (2K-3)+2+ 1,2, I 

For each couple of neighboring rows in which first numbers are even, we have 
vectors: 

2K, (2K-1)+2, 3, I; 
2K+(2K-I)+3+2+1, (2K-2)+2+1, 2,1. 

Now, relying on the aforementioned regularity it is easy to prove that all the 
tetrads of vectors are linearly independent. 

For PT-nets with lengths of2n+2 , 2n+3, and 2n+4, where n is the dimensionality 
of the cube Kn , the constructions of the matrices consisting of direction numbers 
have been studied. Common for these nets is that in all three cases, T=n-3. 
We shall prove the theorem for the case where the length is 2n+4. The other 
cases are proved by analogy. 

Theorem 13. For any n in the cube Kn there exist P T-nets of length equal to 
2n+2 , 2n+3 , 2n+4, for which T = n-3. 

Proof. As was mentioned previously, we shall prove this theorem for the net 
with a length of 2n+4. In this case, v-T=7. This means that it is necessary to 
prove that for given dimensionality n we can make up n rows formed by sevens 
of linearly independent vectors with the binary dimensionality of n+4, which 
possess the following property. Any sevens of vectors composed arbitrarily of 
the first vectors of these rows taken in succession are linearly independent. Such 
sets of vectors we will call correct. 

It is not difficult to make sure (see Table A-5) that for n=3 the property of 
the sevens of vectors as formulated here is fulfilled. Table A-5 represents in 
parentheses in the nth row those vectors that should be used only in the case of 
the dimensionality n of a unit cube. Besides, a direct check shows that the vector 
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Dimension 
of cube K" 

2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 
13 
14 
15 

n 
n+1 
n+2 
n+3 

Fable A-4 

Binary vectors for determining 
coordinates of points 

1,2,3,4 
4+3, 3+2, 2+ I, I 
4,1+2+3,2, I 
5,3+1,2, I 
6,5+2,2, I 
6+5+2+3,4+2+1,2, I 
6+4+2,5+3+2+1,2, I 
7,6+3+2+1,3, I 
7+5+4+2+1,6+2+1,2, I 
8, 7+2, 3, I 
8+7+3+2+1,7+6+2+1,2, I 
9, 8+2, 3, I 
9+8+3+1,7+2+1,2, I 
10,9+2,3, I 
10+9+3+2+1,8+2+1,2, I 

2K-I, (2K-2)+2, 3, I 
(2K-I)+(2K-2)+3+I, (2K-3)+2+1, 2, I 
2K, (2K -1)+2, 3, I 
2K+(2K-I)+3+2+1, (2K-2)+2+1, 2, I 

5 + 3 + 2 is not contained in the linear combination of any correct four vectors 
taken from the first three rows, that is, in the four made up arbitrarily of the 
first vectors taken in succession from the first three rows of Table A-5. In a 
similar manner, the vector 6+4+3+1 is not contained in any correct five of 
vectors taken from the first three rows, and the sum of the corresponding elements, 
the vector 6 + 5 + 4 + 2 + 1 , is not contained in any correct four. Further, the vector 
indicated by number 8 is not contained in any of the correct sixes taken from 
the first three rows. Therefore, the vector 8 can be used as the first element of 
the fourth row; and as the second element we use the vector 6 + 4 + 3 + 1, since 
it is not a linear combination of any correct five. If we want to construct a net 
only in a four-dimensional space, we use as the third element the vector 5+3+2 
since it is not contained in any correct four. And the vector 
5+3+2+6+4+3+1=6+5+4+2+1 is not contained in any correct four. By 
analogy, one can make sure that the elements in the parentheses in the fourth 
row can be used for the construction of a PI-net. 

If Table A-5 is not completed on the fourth row, then the elements presented 
in this row without parentheses should be used as the remaining elements. 
Actually, the vector 9+4+2+ 1 +9+3+ 1 =4+3+2 is not a linear combination 
of any correct triad made up of the elements taken from the first three rows and 
the vectors 8 and 6+4+3+ 1. The vector 5+3+ I cannot be obtained as a linear 
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combination of the first four vectors taken from the fourth row and any correct 
two taken from the previous rows. This vector could have been obtained only 
by attaching to the given four a correct two taken either from the third or fourth 
row. But, as is plain to see, such attachments do not lead to the vector 5+3+1. 
In addition, it can be noted that the vector 5 + 3 + 1 does not belong to any correct 
four made up of the elements from the first four rows. 

The vector 6+5+4+2+ 1 cannot be formed as a linear combination of five 
of vectors from the fourth row and the first vector taken from anyone of the 
previous rows. Out of all the first vectors that are possible, it is only the initial 
vector taken from the first row, I, that can be attached to this five. 

Let us join I to the given five. It is easy to see that no one of the linear 
combinations of vectors in the resulting six can give 6+5+4+2+ 1. Besides, 
the vector 6+5+4+2+ 1 does not belong to any correct four made up of the 
vectors from the first four rows. 

The sum of vectors 6+5+4+2+ 1 +5+3+ 1 =6+4+3+2 does not belong to 
any correct triad made up of the first four rows. 

The theorem for the dimensionalities of the cube K n when n is 5, 6, or 7, is 
proved similarly to what has been given herein. This proof is not presented 
because it is rather cumbersome. The reader can reconstruct it without any 
difficulties using Table A-5. 

Note, that the elements from Table A-5 starting from the eighth row are 
subjected to the following regularity. If n is the number of a row and n is an 
even number, then this row takes the following form: 0+4, 
0+3+0+2+0+1 +6+3(+1), 12+5+4+2+1 (5+3+2), 0+5+3+2+1 
(4+3+2+1), 5+3+1 (0+2+0+1+0), 6+5+4(+1) (0+3+0+2) where the 
designation (+ 1) shows that the second and the sixth places are taken either by 
the vectors given here (without 1), or else 1 is to be simultaneously added to 
corresponding vectors. These additions are to take place on the even dimensionali­
ties only, every second one, starting from n=6. 

If n is an odd number, then the nth row takes the following form: 0+4, 
0+3+0+2+0+ 1 +6+5+4( + 1), 0+5+4+2(5+3+ 1), 0+5+3+2(4+3), 
5+3+2 (0+2+0+1+0),6+3(+1) (0+3+0+2), where the vector 1 is added 
on the odd dimensionalities, every second one, starting from n=9. 

Therefore, the proof that the linear independence conditions are fulfilled for 
all the correct sevens as is necessary for existence of the n-dimensional P n-3-

net having a length of 2n+4, is similar to the proof for nS;.? 

Corollary. If ,. is an index of an n-dimensional LP,.-sequence equal to 
n 

L mi-n > n-3+k for some natural k, then there exists an n-dimensional P,.­
i=! 

n 

net with ,. < L mi-n having a length of 2n+k+4. 

i=! 
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Here, mj is the order of the monocyclic operator corresponding to the ith 
dimensionality of the unit cube. 

Proof. The validity of this formulation of the corollary is obvious. Indeed, let 
us project the points of the Pk+n-3-net having length of 2k+n+4 from the space 
of the dimensionality n+k into the n-dimensional space. In doing so, we obtain 
an n-dimensional net with a length of 2k+n+4 for which T=n+k-3. 

From what was said previously, in particular from the method used in the 
proof, the following statement can be read quite naturally. 

For an arbitrary dimensionality of the cube Kn and for any v, there exist P T­

nets with length of2v where T=n-3. 

Remarks 

1. It is not difficult to show that the direction matrices for the nets given 
here can be selected so that the next condition would be satisfied: Differ­
ent points of the net have different projections into all coordinate axes. 

2. As far as the use of the nets being constructed is concerned, the following 
can be said. They have a substantially smaller value of index T than 
those of LPT-sequences. This improves essentially all the characteristics 
defining the uniformity of their distribution. The results thus obtained 
allow construction of the P T-nets with the number of points acceptable 
in practice even in the spaces of relatively large dimensionalities (n>SO). 
In this case it is appropriate to use one of the nets corresponding to Tables 
A-2 or A-4. When the dimensionalities are large enough, a preferable net 
corresponds to Table A-2. 

3. The algorithm used to calculate the coordinates of the points for these 
nets is the same as that used for the LP T-sequences. The difference exists 
only in the direction matrices. Here, they are defined by the matrices 
formed by the binary vectors taken from Tables A-2-A-S. One such 
matrix is represented in Table A-6. 

According to the table of numerators 11), the coordinates of the direction 
numbers vY) are calculated as 

Here, j is the number of the coordinate of an appropriate point included in an 
P T-net and 1 corresponds to the point number equal to i. The calculations of the 
coordinates qij for the ith point are to be carried out in accordance with (A-34). 

Example 

Let us show how Table A-6 can be used to obtain the coordinates of some 
specific point in Kn. Let n=S, and the point number is 22. As has been already 
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x 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

2 

1.00 
1.25 3 
0.25 
1.25 3 
1.25 1 
0.25 3 
0.25 1 
1.25 3 
1.25 1 
0.25 3 
0.25 3 
1.00 1 
1.25 3 
1.25 3 
0.25 
0.00 
1.25 3 
1.25 1 
0.25 3 
0.00 

3 4 5 

4 
o 9 
o 9 
4 9 
4 9 
o 17 
o 17 
4 17 
4 1 17 
o 9 17 

9 17 
4 9 17 
4 
4 1 

9 
o 9 
4 9 
4 9 

17 

Table A-6 

6 7 8 9 10 11 12 

1 1 
33 65 129 257 
33 65 129 257 
33 65 129 257 
33 65 129 257 
33 65 129 257 
33 65 129 257 
33 65 129 257 

said, 22 corresponds to 10110 in binary notation, 
q22J=Vj2) * VP) * v)5),j=1,5. 

Finding the values in Table A-6 at the intersections of the jth row with the 
second, third, and fifth columns, we shall obtain, respectively: 

Q22,1 = 114 * 118 * 1132=0.01 * 0.001 * 0.()()()()1 =0.01101 
Q22,2=3/4 * 112 * 1132=0.11 * 0.1 * 0.()()()()1 =0.01001 
Q22,3= 114 * 112 * 1132=0.01 * 0.1 * 0.()()()()1 =0.11001 
Q22,4=3/4 * 112 * 1132=0.11 * 0.1 * 0.()()()()1 =0.01001 
Q22,5= 114 * 118 * 1132=0.01 * 0.001 * 0.()()()()1 =0.01101 

Thus, Q22 = (13/32; 9132; 25/32 9132; 13/32). 
When using aPT-net, the values of the coordinates of the ith point depend 

not on the dimension of the design-variable vector, r, only, but also on the 
number of trials, N=2k specified beforehand. The coordinates of the given point 
are defined for N=32. 



www.manaraa.com

References 

Aivazyan, S. A., I. S. Yenyukov, and L. D. Meshalkin. 1983. Applied Statistics. Princi­
ples of Modelling and Initial Data Processing. Moscow: Finansy i Statistika (in 
Russian). 

Aivazyan, S. A., I. S. Yenyukov, and L. D. Meshalkin. 1986. Applied Statistics. Study 
of Relationships. Moscow: Finansy i Statistika (in Russian). 

Artobolevskii, I. I., M. D. Genkin, V. I. Sergeev, and R. B. Statnikov. 1974. "Search 
for a trade-off solution in choosing machines parameters." Doklady AN SSSR. Vol. 
219, No.1: 53-57 (in Russian). 

Auerbakh, V. M., I. Z. Manevich, M. O. Volya, and I. I. Zelikovich. 1985. "Increasing 
efficiency of the underground railway construction mechanization on the basis of the 
modular principle." Transportnoye Stroitel'stvo No. 10: 24-28 (in Russian). 

Banach, L. Y. 1988. "Weak energy and spectral couplings in mechanical oscillatory 
systems." Izvestiya AN SSSR. Mekhanika Tverdogo Tela. No.2: 38-43 (in Russian). 

Banach, L. Y., and M. D. Perminov. 1972. "Investigation of complex dynamic systems 
taking into account weak couplings between subsystems." Mashinovedeniye, No.4: 
3-9 (in Russian). 

Bartel, D. L., and R. W. Marks. 1974. "The optimum design of mechanical systems 
with competing design objectives." ASME Transactions-Journal of Engineering for 
Industry. Vol. 96, Ser. B., No.1: 171-179. 

Baturidi, A. I., V. M. Burlakov, V. I. Molotkov, M. I. Osin, V. I. Senozatskii, S. I. 
Starkov, K. A. Tuskayev, G. G. Usov, and I. P. Fel'dman. 1991. Automation of 
Designing Machine Industry Articles. Moscow: Znaniye (in Russian). 

Bekey, G. A. 1970. "System identification-An introduction and a survey." Simulation. 
Vol. 15, No.4: 151-166. 

Belsley, D. A., E. Kuh, and L. E. Welsch. 1980. Regression Diagnostics: Identifying 
Influential Data and Sources of Collinearity. New York: John Wiley. 

Benayoun, R., J. De Montgolfier, J. Tergny, and O. Larichev. 1971. "Linear programming 
with multiple objective functions: Step method (STEM)." Mathematical Programming 
Vol. 1, No.3: 366-375. 

Benson, H. P. 1992. "A finite, non-adjacent extreme point search algorithm for optimiza-

224 



www.manaraa.com

tion over the efficient set." Journal of Optimization Theory and Applications. Vol. 73, 
Nl: 47-64. 

Berezanskii, O. M., and Y. N. Semenov. 1988. "Solution of ships design problems on 
the basis of multicriteria optimization methods." Sudostroitel'naya Promyshlennost': 
Ser. Sistemy Avtomatizatsii Proektirovaniya, Proizvodstva i Upravleniya. No.9: 78-
85 (in Russian). 

Betin, A. V., and V. V. Kaminskaya. 1992. "Parametric optimization of structures of 
lathes with a movable workhead." In Integrated CAD Systems for Automated Manufac­
tures, ed. V. V. Kaminskaya, pp. 102-113. Moscow: Experimental Research and 
Development Institute for Metal-Cutting Machine-Tools (in Russian). 

Bezier, P. ~987. "Courbes et surfaces." In Mathematiques etCAO, Vol. 4. Paris: Hermes 
Publishing. 

Bode, H. W. 1945. Network Analysis and Feedback Amplifier Design. New York: Van 
Nostrand Reinhold. 

Bondarenko, M. I., A. Y. Nazernkin, A. A. Pozhalostin, R. B. Statnikov, and V. S. 
Shenfel'd, 1994. "Construction of consistent solutions in multicriteria problems of 
optimization of large systems.", Physics-Doklady Vol. 39, No.4: 274-279. Translated 
from Doklady Rossiyskoy Akademii Nauk, Vol. 335, No.6: 719-724. 

Borovin, G. K., I. A. Kuz'min, D. N. Popov, andP. S. Romashkin. 1985. Optimization 
of Parameters of an Electrohydraulic Amplifier with Indirect (Nonunity) Feedback. 
Moscow: Keldysh Institute of Applied Mathematics (in Russian). 

Breiman, L., and J. H. Friedman, 1985. "Estimating optimal transformations for multiple 
regression and correlation." Journal of the American Statistical Association, Vol. 80, 
No. 391: 580--598. 

Bretley, P., B. L. Fox, and H. Niederreiter. 1993. "Implementation and tests of low 
discrepancy sequences." Association of Computing Machinery. Transactions on model­
ing and computer simulation Vol. 2, No.2: 195-213. 

Chemikov, V. A. 1986. "Multicriteria optimization of actuators of fruit harvesters." 
Traktory i Sel' khozmashiny No.6: 36-39 (in Russian). 

Cohon, J. L., G. Scavone, and R. Solanki. 1988. "Multicriteria optimization in resources 
planning." In Multicriteria Optimization in Engineering and in the Sciences, ed. W. 
Stadler, pp. 117-160. New York: Plenum Press. 

Craig, R. R., and M. C. C. Bampton. 1968. "Coupling of substructures for dynamic 
analysis." AlAA Journal Vol. 6, No.7: 113-121. 

Da Cunha, N. 0., and E. Polak. 1967. "Constrained minimization under vector valued 
criteria in finite dimensional spaces. " Journal of Mathematical Analysis and Applications 
Vol. 19, No.1: 103-124. 

Dauer, J. P., and O. A. Saleh. 1992. "A representation of the set of feasible objectives 
in multiple objective linear programs." Linear Algebra and Its Applications Vol. 166: 
261-275. 

Debagyan, O. V., and V. S. Khomyakov. 1982. "Parametric optimization of the universal 
milling machine structure on the basis of LP-search." Izvestiya AN Armyanskoy SSR 
Vol. 35, No.5: 3-10 (in Russian). 

Den Hartog, J. P. 1956. Mechanical Vibrations. New York: McGraw-Hill. 
Dokukin, A. V., Y. D. Krasnikov, and Z. Y. Khurgin. 1978. Statistical Dynamics of 

Mining Machines. Moscow: Mashinostroyeniye (in Russian). 
Dol'berg, M. D., and N. N. Jasnitskaya. 1973. "Estimates from below for frequencies 



www.manaraa.com

226 I References 

of elastic system oscillations. Generalized Donkerlay-Papkovich estimates." Doklady 
AN SSSR, Vol. 212, No.6: 1317-1319 (in Russian). 

Draper, N., and H. Smit. 1966. Applied Regression Analysis. New York: John Wiley. 
Dubov, Y. A., S. I. Travkin, and V. N. Yakimets. 1986. Multicriteria Modelsfor Forma­

tion and Selection of Systems Variants. Moscow: Nauka (in Russian). 
Dyer, J. S., P. C. Fishburn, R. E. Steuer, J. Wallenius, and S. Zionts. 1992. "Multiple 

criteria decision making, multiattribute utility theory: The next ten years." Management 
Science Vol. 38, No.5: 645-654. 

Eschenauer, H. A. 1988. "Multicriteria optimization techniques for highly accurate focus­
ing systems." In Multicriteria Optimization in Engineering and in the Sciences, ed. 
W. Stadler, pp. 309-354. New York: Plenum Press. 

Ester, J. 1987. "Some applications of MCDM on engineering problems." Operations 
Research Spectrum Vol. 9, No.2: 59-80 (in German). 

Faure, H. 1982. "Discrt!pance de suites associees Ii un systeme de numeration (en dimen­
sion S)." Acta Arithmetica. Vol. 41, No.4: 337-351. 

Fishburn, P. C. 1970. Utility Theory for Decision Making. New York: John Wiley. 
Friedman, J. H., and W. Stuetzle. 1981. "Projection pursuit regression." Journal of 

American Statistic Association Vol. 76, No. 376: 817-823. 
Gass, S., and T. Saaty. 1955. "The computational algorithm for the parametric objective 

function." Naval Research Logistics Quarterly Vol. 2, No.1: 39--45. 
Gearhart, W. B. 1979. "Compromise solutions and estimation of the noninferior set." 

Journal of Optimization Theory and Applications. Vol. 28, No.1: 29--47. 
Genkin, M. D., and R. B. Statnikov. 1987. "Basic problems of machines optimal design." 

Vestnik AN SSSR. No.4: 28-39 (in Russian). 
Genkin, M. D., L. V. Korchernnyi, I. B. Matusov, L. N. Sinel'nikov, A. I. Stavitskii, 

and R. B. Statnikov. 1983. "Multicriteria selection of optimal parameters for the 
automobile engine valve gear." Mashinovedeniye No.3: 60-68 (in Russian). 

Genkin, M. D., R. B. Statnikov, I. B. Matusov, and M. D. Perminov. 1987. "On the 
adequacy of a mathematical model to a real object. Vector identification." Doklady 
AN SSSR Vol. 294, No.3: 549-552 (in Russian). 

Gerasimov, Y. N., Y. M. Poehtman, and V. V. Skalozub. 1985. Multicriteria Optimal 
Structural Design. Kiev, Donetsk: Vishcha Shkola (in Russian). 

Godzhaev, Z. A., S. S. Dmitrichenko, and A. Y. Guberniev. 1992. "Optimal design of 
machines shaftings." Vestnik Mashinostroyeniya No.1: 3-5 (in Russian). 

Goldman, R. L. 1969. "Vibration analysis by dynamic partitioning." AIAA Journal Vol. 
7, No.6: 1152-1154. 

Gorodetskii, Y. I. 1984. "Development of an object-oriented CAD system for searching 
for optimal parameters of vertical milling machines with respect to dynamic quality 
criteria." In Mathematical Modelling and Software for CAD Systems, ed Y. I. Gorodet­
skii; pp. 48-66. Gorky: Gorky State University (in Russian). 

Graupe, D. 1976. Identification of Systems. New York: Robert E. Krieger Publishing 
Company. 

Grinkevich, V. K., P. I. Zinyukov, R. B. Statnikov, L. V. Sukhorukov, and S. I. Frid­
man. 1978. "Determination of optimal parameters of a mechanism according to a 
number of local quality criteria." In Methods of Developing Low-Noise Machines, pp. 
44--49, Moscow: Nauka (in Russian). 

Gurychev, S. E., A. V. Gringlaz, and G. S. Bolotin. 1985. "Investigation of dynamic 



www.manaraa.com

References / 227 

characteristics of a multi-objective machine tool." Stanki i Instrumenty. No.1: 22-24 
(in Russian). 

Halton, J. H. 1960. "On the efficiency of certain quasi-random sequences of points in 
evaluating multi-dimensional integrals." Numerical Mathematics Vol. 2, No.2: 84-
90. 

Hammersley, J. M. 1960. "Monte Carlo methods for solving multivariable problems." 
Annals of the New-York Academy of Science, Vol. 86, No.3: 844-874. 

Hiawka, E. 1962. "Zur angenliherten Berechnung mehrfacher Integrale." M onatshefte fiir 
Mathematik Vol. 66, No.2: 140--151. 

Ingerman, V. G. 1985. "Increasing efficiency of mathematical modelling in petrophysics. " 
Neftyanaya Promyshlennost': Ser. NeJtegazovaya Geologiya, Geofizika i Bureniye. No. 
10: 15-18 (in Russian). 

Isermann, H. 1977. "The enumeration of the set of all efficient solutions for a linear 
multiple objective program." Operational Research Quarterly Vol. 28, No.3: 711-
725. 

Kaminskaya, V. V. 1984. "Analysis of dynamics of heavy-duty vertical turning lathes." 
Stanki i Instrumenty No. 12: 8-12 (in Russian). 

Kaminskaya, V. V., and A. V. Gringlaz. 1989. "Computational analysis of dynamic 
characteristics of machine tools structures." Stanki i Instrumenty No.2: 10--13 (in 
Russian). 

Karamzin, Y. N., A. P. Sukhorukov, and V. A. Trofilov. 1986. Optimal Control of 
Light Beams in Nonlinear Medium. Moscow: Znaniye (in Russian). 

Karlin, S. 1959. Mathematical Methods and Theory in Games, Programming, and Eco­
nomics. London-Paris: Pergamon Press. 

Kato, T. 1966. Perturbation Theory for Linear Operators. New York: Springer-Verlag. 
Keeney, R. L. 1972. "Utility functions for multiattributed consequences." Management 

Science Vol. 18, No.5: 27fr-287. 
Kelley, J. L. 1957. General Topology. New York: Van Nostrand Reinhold. 
Khachaturov, A. A. 1976. Dynamics of the Road-Tire-Automobile-Driver System. Mos­

cow: Mashinostroyeniye (in Russian). 
Khomyakov, V. S., and A. I. Yatskov. 1984. "The structure optimization of a heavy­

duty single-column vertical boring and turning machine." Stanki i Instrumenty No.5: 
14-16 (in Russian). 

Khronin, D. V., V. I. Baulin, Y. P. Kirpikin, andM. K. Leontiev. 1984. Basic Principles 
of Computer Aided Design of Flying Vehicles Engines. Moscow: Mashinostroyeniye 
(in Russian). 

Korchemnyi, L. V. 1981. Automobile Engine Valve Gear. Moscow: Mashinostroyeniye 
(in Russian). 

Korobov, N. M. 1959. "On the approximate computation of multiple integrals." Doklady 
AN SSSR Vol. 124, No.6: 1207-1210 (in Russian). 

Kornbluth, J. S. H. 1974. "Accounting in multiple objective linear programming". Ac­
counting Review Vol. 49, No.2: 284-295. 

Koski, J. 1988. "Multicriteria truss optimization." In Multicriteria Optimization in Engi­
neering and in the Sciences, ed. W. Stadler, pp. 263-308. New York: Plenum Press. 

Krasnoshchokov, P. S., A. A. Petrov, and V. V. Fedorov. 1986. Computer Science and 
Design. Moscow: Znaniye (in Russian). 

Kreinin, G. V., N. M. Ostapishin, and G. V. Tarkhanov. 1986. "The choice of design 



www.manaraa.com

228 / References 

variables of active pneumatic vibration isolators." In Vibrations and Vibroaconstical 
Activity of Machines and Structures, ed. Y. I. Bobrovnitskii, pp. 20-25. Moscow: 
Nauka (in Russian). 

Kron, G. 1963. Diakoptics. London: Macdonald. 
Kryukov, B. I., L. M. Litvin, I. M. Sobol', and R. B. Statnikov. 1980. "Optimal design 

of resonance-type vibration machines." Mashinovedeniye. No.5: 31-39 (in Russian). 
Kuhn, H. W., and A. W. Tucker. 1951. "Nonlinear programming." In Proceedings of 

the Second Berkeley Symposium on Mathematical Statistics and Probability, edited by 
J. Neyman, pp. 481-492. Berkeley: University of California Press. 

Kuipers, L., and H. Niederreiter. 1974. Uniform Distribution of Sequences. New York: 
John Wiley. 

Larichev, o. I. 1987. Objective Models and Subjective Decisions. Moscow: Nauka (in 
Russian). 

Lieberman, E. R. 1991. Multi-Objective Programming in the USSR. New York: Academic 
Press. 

Ljung, L. 1987. System Identification: Theory for the User. Englewood Cliffs, N.J.: 
Prentice-Hall. 

Lukyanov, N. K. 1981. "Aggregation in simulation models of ecological systems." Izves­
tiya AN SSSR. Tekhnicheskaya Kibernetika. No.5: 30-35 (in Russian). 

Masataka, Y. 1977. "Study on optimum design of machine structures with respect to 
dynamic characteristics. (Approach to optimum design of machine tool structures with 
respect to regenerative chalter)." Bulletin of JSME, Vol. 20, No. 145: 811-818. 

Matusov, I. B., and R. B. Statnikov. 1981. "On the choice of a metric in the space of 
criteria for determining an optimal machine model." Soviet Math. Dokl. Vol. 24, No. 
2: 434-437. 

Matusov, I. B., and R. B. Statnikov. 1985. "Approximation and regularization in vector 
optimization problems" In Problems and Methods of Decision Making in Managerial 
Systems, pp. 56-62. Moscow: The Institute for Systems Science (VNIISI) (in Russian). 

Matusov, I. B., and R. B. Statnikov. 1987. "Approximation and vector optimization of 
large systems." Doklady AN SSSR, Vol. 296, No.3: 532-536 (in Russian). 

Merkur'ev, V. V., and M. A. Moldavskii. 1979. "A family of convolutions of a vector­
valued criterion for finding points in the Pareto optimal set." Avtomatika i Telemekhan­
ika. No.1: 110-121 (in Russian). 

Molodtsov, D. A., and V. V. Fedorov. 1979. "Stability of optimality principles." In 
Modern State of Operations Research Theory, ed. N. N. Moiseyev, pp. 236-262. 
Moscow: Nauka (in Russian). 

Murav'ev, I. A., and N. D. Bredneva. 1987. "Optimization of freshly harvested haws 
fruit extraction process." Farmatsiya No.1: 18-21 (in Russian). 

Nogovitsin, B. F. 1987. Basic Principles of Calculation and Design of Die-Casting 
Machines. Irkutsk: Irkutsk University Publishing House (in Russian). 

Nyquist, H. 1932. "Regeneration theory." Bell System Technical Journal Vol. 11, No. 
1: 126-147. 

Odrin, V. M. 1986. Morphological Synthesis of Systems: Statement of the Problem, 
Classification of Methods, Morphological Design Methods. Kiev, Ukraine: Institute of 
Cybernetics of the Ukrainean Academy of Sciences (in Russian). 

Ozernoy, V. M. 1988. "Multiple criteria decision making in the USSR: A survey. " Naval 
Research Logistics Vol. 35: 543-566. 



www.manaraa.com

References / 229 

Parlett, B. N. 1980. The Symmetric Eigenvalue Problem. Englewood Cliffs, N.J.: Prentice­
Hall. 

Pel'tsverger, B. V. 1984. "Construction of a special basis in the state space for decomposi­
tion of nonlinear multiconnected systems." Izvestiya AN SSSR. Tekhnicheskaya Kiber­
netika No.2: 45-57 (in Russian). 

Perminov, M. D., and R. B. Statnikov. 1987. "Multicriteria approach to the problem of 
identification of structurally-complex dynamical systems." In Automation of Experiment 
in Machine Dynamics, pp. 53-64. Moscow: Nauka (in Russian). 

Pervozanskii, A. A. and V. G. Gaitsgori. 1979. Decomposition, Aggregation, Approxi­
mate Opt(mization. Moscow: Nauka (in Russian). 

Pluzhnikov, A. I. 1983. Accuracy and Optimization of Machine-Tools Kinematic Chains. 
Moscow: Mashinostroyeniye (in Russian). 

Popov, D. N. 1986. "Efficiency estimation and optimal design of hydraulic drives." 
Vestnik Mashinostroyeniya No.9: 20-23 (in Russian). 

Popov, N. M. 1981. "Approximation of the set of semi-effective points in the design 
problems decomposition." Vestnik MGU. ser. Vychislitel'naya Matematika i Kibernet­
ika No.1: 44-48 (in Russian). 

Portman, V. T., Y. I. Sklyarevskaya, andA. Y. Yakovlev. 1992. "Special-purposeFMS 
simulation system." Stanki i Instrumenty No.7: 2-4 (in Russian). 

Raybman, N. S. 1970. Identijication: What Is This? Moscow: Nauka (in Russian). 
Red'ko, S. F., V. F. Ushkalov, and V. P. Shabel'skii. 1971. "Identification of some 

mechanical systems." In Engineering Cybernetics, pp. 69-82. Kiev, Ukraine: Institute 
of Cybernetics of the Ukrainian SSR Academy of Sciences (in Russian). 

Red'ko, S. F., V. F. Ushkalov, and V. P. Yakovlev, 1985.1dentijication of Mechanical 
Systems. Kiev, Ukraine: Naukova Dumka (in Russian). 

Reshetov, D. N., S. A. Shuvalov, V. D. Dudko, A. V. Klypin, and O. P. Lelikov. 
1985. Computer Aided Calculation of Machines Components. Moscow: Vysshaya 
Shkola (in Russian). 

Rizkin, I. K. 1985. Computer Aided Analysis and Design of Engineering Systems. Mos­
cow: Nauka (in Russian). 

Seber, G. 1977. Linear Regression Analysis. New York: John Wiley. 
Sobol', I. M. 1969. Multidimensional Quadrature Formulas and Haar Functions. Mos­

cow: Nauka (in Russian). 
Sobol', I. M. 1976. "Uniformly distributed sequences with an additional uniformity 

property." Zhurnal Vychislitel'noy Matematiki i Matematicheskoy Fiziki Vol. 16, No. 
5: 1332-1337 (in Russian). 

Sobol' , I. M. 1985. Points Uniformly Distributed over a Multidimensional Cube. Moscow: 
Znaniye (in Russian). 

Sobol', I. M. 1987. "On functions satisfying the Lipschitz condition in multidimensional 
problems of computational mathematics." Doklady AN SSSR, Vol. 293, No.6: 1314-
1319 (in Russian). 

Sobol', I. M., and R. B. Statnikov. 1977. Statement of Some Problems of Computer 
Aided Optimal Design. Moscow: Keldysh Institute of Applied Mathematics (in Russian). 

Sobol', I. M., and R. B. Statnikov. 1981. The Choice of Optimal Parameters in Multicrite­
ria Problems. Moscow: Nauka (in Russian). 

Sobol', I. M., and R. B. Statnikov. 1982. The Best Solutions: Where They May Be 
Found. Moscow: Znaniye (in Russian). 



www.manaraa.com

230 / References 

Spivakov, A. 0., and I. F. Goncharevich. 1983. Vibration and Wave-Type Transporting 
Machines. Moscow: Nauka (in Russian). 

Sprague, C. H., and R. H. Kohr. 1969. "The use of piecewise continuous expansions 
in the identification of nonlinear systems." Transactions of the ASME Vol. 91, Series 
D, No.2: 179-184. 

Stadler, W. (ed.). 1988. Multicriteria Optimization in Engineering and in Science. New 
York: Plenum Press. 

Stadler, W. and J. P. Dauer. 1992. "Multicriteria optimization in engineering: A tutorial 
and survey." In Structural Optimization: Status and Promise, ed. Manohar P. Kamat, 
pp. 209-249, vol. 150. Washington: American Institute of Aeronautics and Astronau­
tics, Inc. 

Statnikov, R. B. 1978. "Solution of multicriteria machines design problems on the basis 
of parameters space investigation." In Multicriteria Decision-Making Problems, ed. 
J. M. Gvishiani and S. V. Yemelyanov, pp. 148-155. Moscow: Mashinostroyeniye 
(in Russian). 

Statnikov, R. B., and I. B. Matusov. 1989. Multicriteria Machines Design. Moscow: 
Znaniye (in Russian). 

Statnikov, R. B. and I. B. Matusov. 1994. "General-purpose finite-element programs in 
search for optimal solutions." Physics-Doklady. Vol. 39, No.6, pp. 441-443, Trans­
latedfrom Doklady Akademii Nauk Vol. 336, No.4: 481-484. 

Statnikov, R. B., I. B. Matusov, P. V. Miodushevskii, Y. Y. Uzvolok, D. S. Fel'dman, 
Y. A. Shevchenko, and V. S. ShenfeI'd. 1993. "Parameter space investigation method 
and multicriteria optimization of objects using finite element models." Doklady Rossiy­
skoy Akademii Nauk Vol. 329, No.1: 17-21 (in Russian). 

Statnikov, R. B., and Y. Y. Uzvolok. 1990. "Determination of parameters boundaries 
in problems of optimal design and vector identification." Doklady AN SSSR Vol. 315, 
No.5: 1057-1061 (in Russian). 

Steuer, R. E. 1986. Multiple Criteria Optimization: Theory, Computation and Applica­
tion. New York: John Wiley. 

Steuer, R. E., and E. U. Choo. 1983. "An interactive weighted tchebycheff procedure 
for multiple objective programming." Mathematic Programming Vol. 26, No.1: 326-
344. 

Strobel, H. 1968. Systemanalyse mit Determinierten Test Signalen. Berlin: VEB-Verlag 
Techn. 

Sukharev, A. G. 1971. "Optimal search for an extremum." Zhurnal Vychislitel'noy Ma­
tematiki i Matematicheskoy Fiziki Vol. 11, No.4: 265-269 (in Russian). 

Tanino, T., and Y. Sawaragi. 1980. "Stability and nondominated solutions in multicriteria 
decision-making." Journal of Optimization Theory and Applications. Vol. 30, No.2: 
229-253. 

Tikhonov, A. N. 1952. "Systems of differential equations containing small parameters 
as factors of derivatives." Matematicheskiy Sbornik Vol. 31173 No.3: 576-586 (in 
Russian). 

Tregubov, V. A. 1983. "Multicriteria choice of operators vibration isolation parameters." 
Mashinovedeniye No.2: 34-45 (in Russian). 

Tsurkov, V. I. 1988. Dynamic Problems of Large Dimension. Moscow: Nauka (in 
Russian). 



www.manaraa.com

References / 231 

Tsypkin, Y. Z. 1982. "Optimal quality criteria in identification problems." Avtomatika 
i Telemekhanika No. 11: 5-24 (in Russian). 

Tumanov, Y. A., B. Y. Lavrov, and Y. G. Markov. 1981. "On the issue of identification 
of nonlinear mechanical systems." PrikladnayaMekhanika No.9: 106--110 (in Russian). 

Vasil'ev, F. P. 1981. Methods of Solving Extremum Problems. Moscow: Nauka (in 
Russian). 

Velikhov, E. P., V. B. Betelin, and A. I. Stavitskii. 1986. "The use of computers in 
mechanical engineering." Mashinovedeniye No.5: 3-11 (in Russian). 

Voevodenko, S. M., and Y. M. Pevzner. 1985. "Approximate semigraphical method for 
calculating the vehicle vibrations in road conditions." A vtomobil' naya Promyshlennost' 
No.7: 12-18 (in Russian). 

White, D. J. 1990. "A bibliography on the applications of mathematical programming 
multiple-objective methods." Journal of the Operational Research Society Vol. 8: 669-
691. 

Woodside, C. M. 1971. "Estimation of the order of linear systems." Automatica. Vol. 
7, No.6: 727-733. 

Yevtushenko, Y. G. 1971. "Numerical method of searching for the global extremum of 
a function (exhaustive search on a nonuniform grid)." Zhurnal Vychislitel' noy Matema­
tiki i Matematicheskoy Fiziki Vol. 11, No.6: 1390-1403 (in Russian). 

Yevtushenko, Y. G., and V. P. Mazurik. 1989. Software for Optimization Systems. 
Moscow: Znaniye (in Russian). 

Zaikova, I. G., and V. V. Yablonskii. 1991. "Parametric optimization of an active vibra­
tion isolation system with controlled damping for single- and six-degree-of-freedom 
objects." Problemy Mashinostroyeniya i Nadyozhnost' Mashin No.1: 16--20 (in 
Russian). 

Zeleny, M. 1974. Linear Multiobjective Programming. Lecture Notes in Economics and 
Mathematical Systems, No. 95, Springer-Verlag, Berlin-New York, New York. 

Zhitomirskii, B. E., Y. A. Rubanovich, andA. A. Filatov. 1984. "The useofthe multicri­
teria optimization method in designing transmissions of main drives of rolling mills." 
Mashinovedeniye, No.1: 33-39 (in Russian). 

Zinyukov, P. I., K. S. Samidov, and S. I. Fridman. 1983. "The choice of optimal 
parameters of machines according to vibration activity criteria." In Mechanics of Ma­
chines, pp. 78-91. Tbilisi: Metsniereba (in Russian). 

Zionts, S., and J. Wallenius. 1980. "Identifying efficient vectors: some theory and compu­
tational results." Operations Research Vol. 28, No.3: 788-793. 



www.manaraa.com

Index 

accuracy, 43, 44, 96, 105 
adequacy criteria, 93, 112 
adequate models, 105 

vectors, 95 
additional properties of unifonnity, 199 
aggregation, 66 

of subsystems, 88 
of variables, 68 

album of the object representations, 41 
alternate condition expectation (ACE) 

algorithm, 132 
amplitude/phase responses, 140 
approximating function, 125 
approximation, 43 

error, 125 
of a feasible solutions set, 43 
of the Pareto optimal set, 50 
possessing property M, 54 

averaging, 124 

binary intervals, 194 
parallelepiped, 193 

block-diagonal matrix, 146 
block head, 82 
bumper, 81 

camshaft, 26 
Cartesian coordinates, 8 
coefficient of covariance, 122 
comfort, 117 
compliance, 141 
concatenation, 76 

concave problems, 51 
consecutive optimization, 5 
consistent solutions, 69, 81, 85 
constraints, 2 

criteria, 3 
design-variable, 3, 17 
functional, 3 

consumption, 171 
contact stress, 29 
continuous functions, 4 
convergence rate, 48 
correlation matrix, 17 
covariance, 122 
criteria constraints, 3, 21 

relations, 160 
space, 14 
vector, 4, 37 

criterion, I, 5 
cross---correlation coefficient, 17 
cubic net, 7 
cutter loaders, 72 
cutting process, 98 
cyclogram, 185 
cylindrical gearings, 181 

damping elements, 108 
factor, 20, 11 0 

data matrix, 126 
decomposition methods, 66 
design matrix, 126 

variables, 3, 85, 154 
design-computer dialogues, 157, 

167 

233 



www.manaraa.com

234 / Index 

design-variable constraints, 3, 40 
space, 3, 39 
vector, 3, 88 

determination coefficient, 127 
die-casting machine, 186 
direction matrix, 195, 197 
discrepancy, 193 
domain of admissible variations, 107 
DP-sequences, 197 
durability, 117 
dyadic rational number, 47 
dynamic compliance, 140 

model, 99, 181 
systems, 60 

eigenvalue problem, 147 
electric discharge machining, 183 
elements of the structure, 137 
energy balance principle, 137 
estimate of discrepancy 196 
Euclidean space, 57 
Euler number-theoretic function, 200 
experimental data, 91 

feasible solutions set, 2, 4 
field, 197 
finite element mesh, 37 

method, 36 
model, 36, 82, 140, 163 

flexible manufacturing systems, 183 
Fourier transformation, 92 
frequency response, 140 
freshly harvested haws extractions, 187 
full-scale test, 101 
functional, 53 

constraints, 3, 21, 101, 155, 178 
dependences, 3, 155 

gear unit design, 177 
generalized coordinates, 138 

error, 91 
grinding machine, 139 

Halton sequences, 213 
Hammersley nets, 213 
harmonic force, 20 
Hausdorff metric, 52, 59 

topology, 58 
Hemming space, 57 
hierarchically consistent solutions, 69 
histograms, 23 

identification, 89 
identified solutions, 95 

vectors, 96 
ill-posed problem, 52, 57 
inertia matrix, 146 
insignificant, 138 

design variables, 136 

kinetic energy, 137 
Kron's methods, 67 

Laplas transformation, 92 
large-scale systems, 66, 81 
lathes with movable workheads, 173 
linear difference equation, 198 

differential equation, 11 0 
multiparametric regression, 126 
problems, 50 
systems, 91 

links, 26 
Lipschitz condition, 45 
load preservation, 11 7 
LPT-sequences, 10 

machine tools, 176 
machining accuracy, 142, 169 
Markov's estimate, 91 
mathematical model, 2, 13 

of a truck, 108 
matrix of spectral coupling coefficients, 147 
maximal likelihood, 91 
metal consumption, 141, 171 
metal-cutting machine tools, 169 
metric space, 57 
minimum of the average risk, 91 
Mises maximum equivalent stress, 37 
modes of vibrations, 142 
monocyclic operators, 197 
multicriteria 

identification, 98, III 
optimization, 1 

multipurpose single-column 
vertical boring and turning machine, 176 

natural frequencies, 137 
modes of oscillations, 137 
oscillations shapes, 147 

neighborhood, 53 
net, 7 
nets with improved uniformity 

characteristics, 214 



www.manaraa.com

new LPT-sequences, 208 
nonparametric estimates of local regression, 

130 

octaves, 109 
operational development of prototypes, 105 

of a vehicle, 108 
optimization criteria, 163, 173 
ordered test table, 10 
orthogonality condition for 

the oscillations shapes, 150 
oscillator, 20 

parallelepiped nets, 213 
Parameter Space 

Investigation Method (PSI method), 10 
parametric identification, 90 
Pareto optimal set, 4 
performance criteria 3, 140, 156, 178 
piecewise-polynomial function, 30 
pipe-cutting machines, 177 
platelike four-node plane elements, 38 
potential energy, 137 
power spectral densities (PSD) of accelera­

tions, 109 
of excitation, 109 

productivity, 169 
projection pursuit regression, 130 
property A , 199 

A' ,204 
B,206 
B(Ie) , 206 

proximity criteria, 93 
pseudocriteria, 14 
pseudofeasible solutions set, 77, 78 
p-net, 194 
Po-net, 194 
PT-nets, 10, 194 

quasi-binary 
interval, 194 

parallelepiped, 194 

random error, 125 
rear panel, 82 
regression analysis, 122 

equation, 127 
regularizing sequence, 58 
relations between criteria, 17 
resonant table vibrator, 153 
r-nary LPo-sequences, 213 

road tests, 114, 163 
root-mean-square (RMS), 119 

of accelerations, 113 

safety, 117 
scheme A, 72 

B,74 
C,75 

sensitivity, 122 
sequence, 7 
set, 2, 4 

of E-adequate vectors, 97 
shapes of oscillations, 146 
ship design, 187 
side rail, 163 
significance measure, 135 

Index / 235 

significant design variables, 142, 173 
singular perturbation method, 67 
slotter, 98 
small parameters, 68 
space of design variables, 7 
special Lipschitz condition, 46 
standardization of variables, 123 
static compliance, 141 
stiffness, 110, 140 

coefficients, 20 
matrix, 146 

stress-strained state, 37, 163 
structural identification, 90 

optimization, 85 
subsystems, 69, 83 
superstructure over the sets, 76 
"suspicious" points, 55 
system of equations, 67 

of preferences, 6 

table of numerators, 211 
tappet, 28 
test table, 10, 11 
topological spaces, 58 
transfer functions, 92 
trial points, 13 
truck frame design, 162 

tests, III 
trunk shakers, 181 
uniformly distributed sequences, 7 
unit r-dimensional cube, 7 

step functions, 90 
unordered table, 10 



www.manaraa.com

236 I Index 

value function, 6 
valve gear, 26 

spring, 26,28 
variables, 3 
vertical knee-type milling machine, 169 
vibration activity, 142 

isolators, 188 

machines, 153 
stability, 142 

weak couplings, 146 
energy coupling, 148 
spectral coupling, 149 
weighted Euclidean Space, 57 



<<

  /ASCII85EncodePages false

  /AllowTransparency false

  /AutoPositionEPSFiles true

  /AutoRotatePages /None

  /Binding /Left

  /CalGrayProfile (Gray Gamma 2.2)

  /CalRGBProfile (sRGB IEC61966-2.1)

  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)

  /sRGBProfile (sRGB IEC61966-2.1)

  /CannotEmbedFontPolicy /Error

  /CompatibilityLevel 1.3

  /CompressObjects /Off

  /CompressPages true

  /ConvertImagesToIndexed true

  /PassThroughJPEGImages true

  /CreateJobTicket false

  /DefaultRenderingIntent /Perceptual

  /DetectBlends true

  /DetectCurves 0.1000

  /ColorConversionStrategy /sRGB

  /DoThumbnails true

  /EmbedAllFonts true

  /EmbedOpenType false

  /ParseICCProfilesInComments true

  /EmbedJobOptions true

  /DSCReportingLevel 0

  /EmitDSCWarnings false

  /EndPage -1

  /ImageMemory 1048576

  /LockDistillerParams true

  /MaxSubsetPct 100

  /Optimize true

  /OPM 1

  /ParseDSCComments true

  /ParseDSCCommentsForDocInfo true

  /PreserveCopyPage true

  /PreserveDICMYKValues true

  /PreserveEPSInfo true

  /PreserveFlatness true

  /PreserveHalftoneInfo false

  /PreserveOPIComments false

  /PreserveOverprintSettings true

  /StartPage 1

  /SubsetFonts false

  /TransferFunctionInfo /Apply

  /UCRandBGInfo /Preserve

  /UsePrologue false

  /ColorSettingsFile ()

  /AlwaysEmbed [ true

  ]

  /NeverEmbed [ true

  ]

  /AntiAliasColorImages false

  /CropColorImages true

  /ColorImageMinResolution 150

  /ColorImageMinResolutionPolicy /OK

  /DownsampleColorImages true

  /ColorImageDownsampleType /Bicubic

  /ColorImageResolution 150

  /ColorImageDepth -1

  /ColorImageMinDownsampleDepth 1

  /ColorImageDownsampleThreshold 1.50000

  /EncodeColorImages true

  /ColorImageFilter /DCTEncode

  /AutoFilterColorImages true

  /ColorImageAutoFilterStrategy /JPEG

  /ColorACSImageDict <<

    /QFactor 0.40

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /ColorImageDict <<

    /QFactor 0.76

    /HSamples [2 1 1 2] /VSamples [2 1 1 2]

  >>

  /JPEG2000ColorACSImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 15

  >>

  /JPEG2000ColorImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 15

  >>

  /AntiAliasGrayImages false

  /CropGrayImages true

  /GrayImageMinResolution 150

  /GrayImageMinResolutionPolicy /OK

  /DownsampleGrayImages true

  /GrayImageDownsampleType /Bicubic

  /GrayImageResolution 150

  /GrayImageDepth -1

  /GrayImageMinDownsampleDepth 2

  /GrayImageDownsampleThreshold 1.50000

  /EncodeGrayImages true

  /GrayImageFilter /DCTEncode

  /AutoFilterGrayImages true

  /GrayImageAutoFilterStrategy /JPEG

  /GrayACSImageDict <<

    /QFactor 0.40

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /GrayImageDict <<

    /QFactor 0.76

    /HSamples [2 1 1 2] /VSamples [2 1 1 2]

  >>

  /JPEG2000GrayACSImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 15

  >>

  /JPEG2000GrayImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 15

  >>

  /AntiAliasMonoImages false

  /CropMonoImages true

  /MonoImageMinResolution 1200

  /MonoImageMinResolutionPolicy /OK

  /DownsampleMonoImages true

  /MonoImageDownsampleType /Bicubic

  /MonoImageResolution 600

  /MonoImageDepth -1

  /MonoImageDownsampleThreshold 1.50000

  /EncodeMonoImages true

  /MonoImageFilter /CCITTFaxEncode

  /MonoImageDict <<

    /K -1

  >>

  /AllowPSXObjects false

  /CheckCompliance [

    /None

  ]

  /PDFX1aCheck false

  /PDFX3Check false

  /PDFXCompliantPDFOnly false

  /PDFXNoTrimBoxError true

  /PDFXTrimBoxToMediaBoxOffset [

    0.00000

    0.00000

    0.00000

    0.00000

  ]

  /PDFXSetBleedBoxToMediaBox true

  /PDFXBleedBoxToTrimBoxOffset [

    0.00000

    0.00000

    0.00000

    0.00000

  ]

  /PDFXOutputIntentProfile (None)

  /PDFXOutputConditionIdentifier ()

  /PDFXOutputCondition ()

  /PDFXRegistryName ()

  /PDFXTrapped /False



  /CreateJDFFile false

  /Description <<





    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

    /CZE <>

    /DAN <>

    /DEU <>

    /ESP <>

    /ETI <>

    /FRA <>







    /HUN <>

    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)

    /JPN <>

    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

    /LTH <>

    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>

    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)

    /NOR <>

    /POL <>

    /PTB <>





    /SKY <>

    /SLV <>

    /SUO <>

    /SVE <>

    /TUR <>



    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>

  >>

>> setdistillerparams

<<

  /HWResolution [2400 2400]

  /PageSize [595.276 841.890]

>> setpagedevice





