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Preface

In January—February 1991 I had an opportunity to deliver lectures on multicri-
teria optimization at a number of American companies and universities. The
contacts with the people working for the companies, as well as discussions with
renowned experts in the field (Dr. W. Stadler, Dr. V. Ozernoy, Dr. E. Lieberman,
et al.) convinced me that it would be worthwhile to write a book for the American
audience. Although optimization has been dealt with in numerous books and
papers of varying excellence. I was dissatisfied that the results of solving engi-
neering optimization problems were not much more impressive. The more so,
since there exist quite a number of first-rate optimization methods.

In solving optimization problems it is usually assumed that the problem has
already been formulated, and one has only to find its solution. Actually, this is
not the case for the majority of engineering problems. Even if one has at his
disposal an adequate mathematical model, which is a rare occasion, this does
not guarantee success. In problems involving conflicting criteria, which are most
typical for engineering applications, the designer encounters objective difficulties
in formulating constraints imposed on design variables and performance criteria.
However, these constraints are just those determining to a considerable extent
a set of feasible solutions that satisfy all necessary requirements to the object
under design. Without constructing this set all further efforts to optimize the
solution to a real problem often prove to be futile.

Both the book and the problems considered in it have been brought to life by
the practical significance of the problems under consideration, which form a
considerable part of the book. Though quite diverse, all the problems have one
feature in common—to solve them one must first find the feasible solutions set.

Central to the book is the parameter (design-variable) space investigation (PSI)
method, which has been brought to life by the necessity of correct statement and
solution of engineering problems of optimization.

The multicriteria approach allows us to interprete in a new fashion many well-

vii
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known and important problems such as identification and operational development
of prototypes designed for batch and mass production, and to develop new
methods for their solution.

The problems considered in this book are perennial problems for engineers,
designers, and analysts engaged in creating various machines, mechanisms,
structures, and devices.

At present, the PSI method is efficiently used in many areas of human activity.
This book acquaints the Western reader with some practical results of its appli-
cation.

We live in the vast world of real multicriteria problems. Previously, we were
taught to see it in the single-criterion dimension, and, hence, in a distorted form.
However, it is no exaggeration to state that the world must be seen as it really
is since this is very important for our lives.

Long ago I was invited to Central Asia to deliver popular lectures. When
speaking in Tashkent, Uzbekistan, I noticed a dozing old man very much like
a traditional Eastern sage. He wore a turban and sat completely motionless with
shut eyes. I was speaking about decision-making problems and presented an
example. “Suppose five brides are presented to you and you are asked to choose
the best one,” said I. Imagine my surprise when the man approached me after
the lecture and said: “I think nobody, save Allah, knows how to do this, since
otherwise people wouldn’t behave so foolishly. But the very question is why do
you think that one has to choose among the presented women, not among
some others?” In a single sentence the man managed to condense the extreme
importance of the problem of obtaining feasible solutions.

Before us my coauthor and I have the attentive, interested, and benevolent
audience. We were eager to write this book for you and hope that it will not be
read in vain, but will help designers in their work.

R. Statnikov



Introduction

Optimization in Engineering Problems

The majority of engineering problems are essentially multicriteria. In designing
machine tools, airplanes, automobiles, ships, and locomotives we do our best
to increase their productivity, strength, reliability, longevity, efficiency, and
utilization factor. At the same time we try to decrease vibration and noise,
production and maintenance costs, the number of failures, material and fuel
consumption, overall dimensions, etc. As a rule, different performance criteria
of an engineering system are conflicting in the sense that improvement in some
of them results in deterioration in some others.

At present, the annual world production reaches dozens of millions of diverse
machines, mechanisms, structures, robots and manipulators, automatic transfer
lines, as well as unique expensive objects, such as nuclear power stations and
spacecrafts.

In order to create competitive objects one has to use up-to-date technology,
materials, equipment, microprocessors, etc. However, the work still starts with
the design, which is one of the most important links in the tedious process of
creation of modern machines and machine systems. Clearly a superior machine
cannot be created on the basis of a second-rate design. Also, since the fleet of
machines is to be renovated in no more than five to seven years, a design must
be not only optimal but accomplished in the shortest time measured in several
months. However, a preliminary design often foresees excessive material con-
sumption, dangerous noise levels, high vibration activity, low reliability, inade-
quate longevity and strength, all resulting in premature failures, emergency
situations, excessive energy consumption, unacceptable pollution of the environ-
ment, and rapid exhaustion of natural resources. This is due to the fact that
optimization has not yet become a technical policy. To confirm the validity of
this statement it suffices to say that optimization of structural parameters of batch
and mass-production machines may result in decreasing the energy and material
consumption by no less than 15%, and lowering the cost by 20%. This makes
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optimization, considered as a technical policy, an objective necessity caused by
a dramatic sharp increase in machinery production in the last 40-50 years.

About 20-30 years ago the methods of nonlinear programming suddenly be-
came very popular. Many works were published in which the problems of optimal
design were essentially reduced to traditional problems of optimization. The
hope was that the epoch of total optimization had finally come, and plants would
soon start manufacturing optimal automobiles and machine tools. However; soon
the hopes faded and were replaced by disillusion, since the results of using
mathematical methods of optimization in solving engineering problems proved
to be ridiculously insignificant: “the mountain brought forth a mouse,” despite
the fact that plenty of first-rate methods of optimization have been developed.

A careful analysis of the majority of solved engineering problems has shown
that, considered as problems of optimization, they have been ill-posed. In order
to treat a patient one must first diagnose the disease correctly. This is why one
of the main issues to be discussed in this book is the correct formulation of
multicriteria optimization problems.

Traditionally, any problem is divided into two phases: formulation and solu-
tion. First, one poses a problem and then solves it with the help of a computer.
However, for engineering optimization problems this primitive scheme is im-
proper, and the designer cannot, as a rule, formulate a problem correctly prior
to its solution. Actually, he solves the problem, analyzes the results, corrects
the formulation, and solves the problem again, his way to the truth being a
complicated spiral line. This is a multiply repeated, cyclic process of “formula-
tion-solution-analysis-correction-. . .” typical for the majority of engineering
problems of optimization.

Note that ill-posedness of an engineering optimization problem may be caused
by more than just the use of an inadequate mathematical model. Quite often an
optimization problem proves to be ill-posed though the mathematical model is
all right. Also, though designers usually pay considerable attention to constructing
an adequate mathematical model, the issues of formulating the problem of optimi-
zation (which actually lie in the “boundary layer” between the traditional spheres
of interest of pure and applied mathematicians) are presently the least investigated
ones.

Broad experience in solving problems has shown that the time needed to
formulate a problem makes up 70-85% of the total time required for a complete
treatment, from the formulation to results. Often the initial formulation has little
in common with the final one, which is followed by the search for an optimal
solution.

The life cycle of a complex technological system such as a machine includes
the following stages: the development of the request for proposal and specifica-
tion, design (subdivided into several phases), manufacture, the tests and opera-
tional development of a prototype,.quantity production, and exploitation.
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At each stage one encounters many diverse problems. Accordingly, we con-
sider the following two extensive classes of problems.

1. Multicriteria optimization of complex objects. Successful optimization
depends, in turn, on solving the following problems.

Determination of feasible solutions set and Pareto optimal set. Let
us ask ourselves how many design solutions of a machining center, an
automobile, or a ship are considered before choosing the single one that
is to be put into quantity production? The answer is: not many. The
result is that we have to seek the optimal solution among a few candidates
that often are far from being the best ones. In reality, there exists the
so-called feasible solutions set which comprise all solutions meeting all
the requirements to the future machine. Determination of such a set is
one of the major problems of optimal design because nobody can guaran-
tee that even a talented and experienced designer will be able to find
the best solution, operating with a small number of candidates only, and
without determining the feasible solutions set. Hence, the traditional
approach does not guarantee obtaining the optimal design. Thus, to
create competitive machines one must be able to construct the feasible
solutions set. The problem is how to help the designer do this. In solving
multivariable problems with conflicting criteria, the construction of the
set proves sometimes to be a difficult task even for an experienced and
highly skilled designer.

A feasible solutions set incorporates a subset of unimprovable, or the
so-called Pareto optimal’, design solutions which cannot be improved in
all the performance criteria simultaneously. Clearly, the ultimate design
solution must necessarily be Pareto optimal. That is why it is so important
to be able to construct and analyze the Pareto optimal set. Especially
difficult is the task of approximately constructing the feasible solutions
set and Pareto optimal set to a given accuracy. Though the problem is
under study for a rather long time, the complete solution has not yet
been obtained. In this book, we propose solutions based on sufficiently
simple assumptions concerning the properties of performance criteria.

2. Problems of multicriteria identification. Usually, identification of an
object is defined as the construction of its mathematical model and
determination of the latter’s design variables, based on the analysis of
the object’s responses to known external disturbances. In contrast to
conventional (scalar) identification, we use the ensemble (vector) of
proximity (closeness, adequacy) criteria, characterizing the discrepancies

lWilfredo-Pateto-(1848-1923) was.a - well-known Italian economist and sociologist.
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between the corresponding characteristics of a mathematical model and
the full-scale experiment.

Multicriteria identification is an important fundamental and applied problem
one has to deal with in any area where theoretical and experimental results have
to be matched.

When optimizing the parameters of some model, we tacitly suppose that the
model is adequate and the results obtained on its basis are reliable. If the optimiza-
tion results turn out to be not of practical significance, one possible cause may
be the inadequacy of the mathematical model. In this connection the Eastern
proverb “One can’t pour out of a jug more than it contains” should be kept in
mind. Hence, it is important that the models under consideration adequately
describe real objects. One must be aware of the mathematical models’ advantages
and drawbacks.

A solution to the problem of multicriteria identification must allow determina-
tion of the “sphere of applicability” of the mathematical model, evaluation of
expediency of its further development, accuracy, completeness, and trustworthi-
ness of the results, as well as correction of the variable boundaries and verification
of the list of performance criteria for further solution of optimization problems.

The method of muticriteria identification proposed in this work allows solution
of an important applied problem of operational development (improvement) of
prototypes. The significance of the problem is stressed by the fact that the cost
of operational development is often commensurate with that of the creation of
a new machine.

The problems of operational development are solved in two stages: First, the
problem of multicriteria identification is solved, and then the problem of optimiz-
ing the performance criteria of the object subjected to improvement, is considered.

In the late 1960s, when it became clear that the vast number of optimization
methods had practically no effect on the quality of designed objects, we started
the development of the conception, methods, and algorithms for formulating and
solving the problems of optimization of complex technological objects.

The efforts were crowned by the creation of the parameter (design-variable)
space investigation (PSI) method, which is central to this book. The PSI method
was created by Sobol’ and Statnikov (see, e.g., Statnikov (1978) and Sobol’ and
Statnikov (1981)). Primarily, the method is aimed at the formulation and solution
of the problem of determination of the feasible solutions set. In this sense, the
method has no analogue. In creating the method we did our best to take into
account the specific features of designers’ thinking and behavior. Of course, the
optimal solution to a highly complicated multicriteria problem cannot be found
in the automatic mode. In the case under consideration the search scenario is
based on the designer-computer dialogues. Later, the PSI method was used as
a basis for developing the methods for approximating the feasible solutions set and
Pareto optimal set, multicriteria identification, decomposition and aggregation of
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large-scale systems, and the estimation of criteria sensitivity to design variable
alteration.

Practical results obtained on the basis of the PSI method have been tested at
a number of major enterprises.

We were aware of the uniqueness and large scale of this extensive experiment
and thought that it must be within the reach of the designers engaged in the
search for optimal solutions of engineering problems. This is demonstrated by
numerous examples whose authors have kindly proposed them for publication
in this book.

The PSI method finds numerous applications in design practice in Russia and
former USSR republics. It was efficiently used in geophysics and pharmacy,
fiber and nonlinear optics, nuclear power and technology, petrophysics, and
other fields in which complex multicriteria problems were present. At present,
the boundaries of the sphere of its application may hardly be drawn.

The book generalizes our personal and professional experience, and we hope
it will be helpful to the reader.

Today, as well as long ago, many designers rely, for some reasons, only on
their personal experience, intuition, and luck. Of course, all means are good for
attaining good objectives, the more so, “victors are not judged.” However, we
could give numerous, notorious examples when even gifted, acclaimed designers
have failed to find the best solutions without using the methods of multicriteria
optimization. What, then, is to be said about rank-and-file designers?

In solving an engineering problem, of special interest is the designer’s thought
flow, reasoning, and use of the PSI method.

That is why in considering a number of examples we tried, as much as possible,
to convey those considerations that resulted in an alteration of the initial problem
formulation and substantiation of a new one.

In selecting the examples for the book we tried to find those that are instructive
from the viewpoint of methodology.

Special attention is paid to multicriteria optimization of objects by using finite
element models. This is done not only because the problems are of extreme
practical importance and their solution guarantees huge economic gains, but
primarily because the PSI method allows, for the first time, revelation and
evaluation of the entire diversity of geometrical shapes of the object under study
(or being designed). In turn, this allows approaching the solution of problems
with unformalizable criteria for the choice of the best production technology.

In brief, we wished to show life in its genuine form, and this has predetermined
the form of the book. We aimed to describe the process of formulation and
solution of the problem of the feasible solutions set determination, despite the
diverse nature of problems under consideration. However, the major objective
was to demonstrate the single conception of analysis on the basis of the PSI
method. We shall be thankful for the reader’s patience in getting acquainted with
all the examples presented in this book, which are predominantly of methodologi-
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cal character. By presenting so much factual material we wanted, as much as
possible, to make our concept of multicriteria analysis accessible and understand-
able for everyone who is going to solve analogous problems.

Alongside with introducing the new approach to finding optimal solutions at
numerous enterprises, we delivered the “Multicriteria Machines Design” course
of lectures in many countries. This book is addressed to a wide audience, from
undergraduate students to researchers and engineers; actually, to everyone en-
gaged in solving engineering optimization problems.

Since this is one of the first works on the study of engineering multicriteria
problems, we are well aware that it has not yet acquired its final perfect form,
and we tried, therefore, to avoid making categorical conclusions.

In mass and batch manufacture of machines and mechanisms that involve
enormous material resources and where the cost of an error (the loss of markets,
incompetitiveness of products, premature failures, and emergency situations) is
rather high, multicriteria optimization grows into an objective necessity.

The PSI method has been realized in the form of the multicriteria optimization
and vector (multicriteria) identification (MOVI) programs package created with
the invaluable contribution of Mr. Y. Y. Uzvolok. This is the package that has
been used for solving numerous problems of multicriteria optimization.

We thank Mr. Mikhail M. Tsipenyuk, who has done much favoring the
publication of this book. We appreciate Mrs. Nelya B. Statnikova, who helped
us in our contacts with the Publishers and Mr. LeRoy M. Lefkowitz who organized
Dr. R. B. Statnikov’s tour in the US for delivering lectures on the PSI method.

Especially we are grateful to Dr. Wolfram Stadler, Dr. Vladimir M. Ozernoy
and Dr. Ralph Steuer for their kind attitude and valuable advice, which added
much to the book.

We are thankful to all our colleagues who helped us when preparing the
manuscript of this monograph. We want to mention here Dr. I.S. Yenyukov and
Dr. L.Y. Banach, who participated in the work on Sections 5-1 and 5-4,
respectively, as well as Mr. G.I. Firsov, Dr. E.M. Stolyarova, and Dr. N.N.
Bolotnik who discussed with us different issues related to the scope of the
book. Especially helpful were Mr. Y.Y. Uzvolok, Mr. V.S. Shenfeld, Mr. Y.S.
Yuzhakov, Mr. A.A. Pozhalostin, and Mrs. O.A. Frolova, our colleagues from
the Laboratory of Theory and Methods of Optimal Design of Russian Academy
of Sciences of the Mechanical Engineering Research Institute.

Different people look at optimization from different points of view: mathemati-
cal, philosophical, political, pragmatic, etc. Optimization has many faces, but
it is always aimed at reaching perfection. That is why we consider this book a
path to finding sound engineering solutions.

The history of science shows that the paths to the truth are multitudinous.
Here we have described one of them. Said Montenne: “The truth is so great a
thing that we must not ignore any way.leading to it.” We agree.
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Multicriteria Optimization and the
Parameter Space Investigation Method

1-1. Engineering Optimization Problems: Their Features and
Formulation

First of all, we will outline a class of problems to be solved. In doing this, we
will rely on the experience accumulated while solving numerous engineering
optimization problems, the problems of design included. This enables us to
cover a sufficiently wide class of problems encountered in different applications,
especially in engineering. There are a number of features inherent in the class
of the problems under consideration that predetermine both their formulation and
approaches to their solution.
Let us enumerate some basic features of the problems to be considered.

1. The problems are essentially multicriteria. As a rule, attempts are made
to reduce multicriteria problems to single-criterion ones. For example,
productivity of a machine is undoubtedly an important index. However,
should one always try to make it maximum? Besides, the single-criterion
formulation of a problem ignores such questions of paramount signifi-
cance as: What is the cost of the maximum productivity? How much
does it deteriorate other performance criteria? Why is one criterion pre-
ferred over other ones?

Numerous attempts to construct a generalized criterion in the form of
combination of particular criteria proved to be fruitless.

By cramming a multicriteria problem into the Procrustean bed of a
single-criterion one, we replace the initial problem with a different one
that has little in common with the original problem. Obviously, one
should always try to take into account all basic performance criteria
simultaneously.
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2. The determination of the feasible solutions set is one of the fundamental
issues of the analysis of engineering problems. The construction of this
set is an important step in the formulation and solution of such problems.

3. The problem formulation and solution make up a single process. Custom-
arily the designer first formulates a problem and then a computer is
employed to solve it. However, in the case under consideration this
approach is unsuitable because only in rare cases can one formulate a
problem completely and correctly before its solution. The feasible solu-
tions set may be obtained only in the process of solution, therefore the
problems should be formulated and solved in the interactive mode.

4. As a rule, mathematical models are complicated systems of equations
(including differential equations) that may be linear and nonlinear, deter-
ministic and stochastic, with distributed and lumped parameters.

5. Usually the parameters of a model are continuous. The feasible solutions
set can be multiply connected, and its volume may be several orders of
magnitude smaller than that of the domain within which the optimal
solution is sought.

6. Both the feasible solutions and Pareto optimal sets are nonconvex. As
a rule, the information about smoothness of goal functions is absent.
Usually these functions are nonlinear and continuous, however they may
be nondifferentiable. Almost always, there are many various constraints,
and the dimensionality of the design variables and criteria vectors reaches
many dozens.

7. Very often, designers encounter serious difficulties neither in analyzing
the feasible solutions and Pareto optimal sets nor in choosing the most
preferred solution. They have a sufficiently well-defined system of prefer-
ences. Besides, the aforementioned sets usually contain a small number
of elements.

As mentioned in the Introduction, to formulate and solve engineering optimiza-
tion problems, the method of parameter space investigation (PSI) has been devel-
oped. Statnikov (1978) and Artobolevskii et al. (1974) have been among the
first to discuss the PSI method. A systematic and comprehensive description of
the method can be found in Sobol! and Statnikov (1977, 1981, 1982) and Genkin
and Statnikov (1987). In what follows, the material of these works is used to a
considerable extent.

Formulation of Multicriteria Optimization Problems

We discuss here the formulation of the mathematical problem and methods of
its_solution_that_can _be_applied_to_the majority of engineering optimization
problems.
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Let us consider an object (mechanical, biological, social, etc.) whose operation
is described by a system of equations (differential, algebraic, etc.) or whose
performance criteria may be directly calculated. We assume that the system
depends on r design variables a;,...,o, representing a point @=(ay,...,a,) of an
r-dimensional space. Commonly, a appears in the aforementioned equations. In
this book, when considering optimization problems, the design-variable vector
(vector of design variables), @=(a;,...q,), is also referred to as solution or
model, whereas the components of this vector are referred to as design variables
or simply variables.

In the general case, when designing a machine, one has to take into account
design-variable, functional, and criteria constraints.

Design-variable constraints (constraints on design variables) have the form

aFsqysart, j=1,...,r, (1-1)

In the case of mechanical systems, a; represent the stiffness coefficients, moments
of inertia, masses, damping factors, geometric dimensions, etc.
Functional constraints may be written as follows

Cr=fa)=C%*, I=1,....t (1-2)

where the functional dependences f)(a) may be either functionals depending on
the integral curves of the differential equations mentioned previously or explicit
functions of a (not related to the equations); and C% and C%* are constraints
such as the allowable stresses in structural elements, the track gauge, etc.

Also, there exist particular performance criteria such as productivity, the
material consumption, and efficiency. It is desired that, other things being equal,
these criteria, denoted by ®,(a), v=1,...,k, would have the extreme values. For
simplicity we suppose that ® () are to be minimized.

Obviously, constraints (1-1) single out a parallelepiped II in the r-dimensional
design-variable space (space of design variables). In turn, constraints (1-2) define
a certain subset G in II whose volume may be assumed to be positive without
loss of generality.

In order to avoid situations in which the designer regards the values of some
criteria as unacceptable, we introduce criteria constraints

O ()=PF*, v=1,...,k (1-3)

where @** is the worst value of criterion ®,(e) the designer may comply with.
(The choice of ®¥* is discussed in Section 1-3.)

Criteria constraints differ from functional ones in that the former are determined
when solving a problem and, as a rule, are repeatedly revised. Hence, unlike
C% and C**, reasonable values of ®%* cannot be chosen before the problem
solving.
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Constraints (1-1)-(1-3) define the feasible solutions set D, i.e., the set of
design solutions o' that satisfy the constraints, and hence, DCGCII.

If functions fi{a) and ®,(a) are continuous in II then the sets G and D are
closed.

Let us formulate one of the basic problems of multicriteria optimization. It is
necessary to find such a set PCD for which

<I>(P)=mig d(a) (1-4)

where ®(a)=(P(w),...,Py(av)) is the criteria vector; and P is the Pareto optimal
set.

We mean that ®(a)<®(B) if for all v=1,....k, P, (a)<D,(B) and at least
for one woE{l,... k}, @, ()<P, (B).

Upon solving the problem one has to determine design-variable vector a’EP,
which is the most preferred among the vectors belonging to set P. However, if
not all performance criteria can be formalized, then the optimal solution should
be sought over the entire set D.

Let us give an alternative definition of the Pareto optimal set.

Definition. A point o€ED, is called a Pareto optimal point, if there exists no
point €D such that ®,(a)=®,(a”) for all v=1,...,k and D, (a)<D, () for

at least one vo€{l,...,k}. A set PCD is called Pareto optimal if it consists of
Pareto optimal points.

The Pareto optimal set plays an important role in vector optimization problems,
because (1) It can be analyzed easier than the feasible solutions set; and (2) the
optimal vector always belongs to the Pareto optimal set, irrespective of the system
of preferences used by the designer for comparing vectors belonging to the
feasible solutions set. The importance of this set is determined to a great extent
by the well-known theorem formulated, for example, in Sobol’ and Statnikov
(1981).

Theorem. If feasible solutions set D is closed, and criteria ®,(e) are continuous,
then the Pareto optimal set is nonempty.

Thus, when solving a multicriteria optimization problem, one always has to
find the set of Pareto optimal solutions.

Although these arguments in favor of the problem formulation are rather
obvious, some alternative formulations are often used in practice. Next we
analyze three such formulations and point out their drawbacks.

A. Substitution of a multitude of criteria by a single one

As_a_rule, this_approach fails_to_provide acceptable results. For instance,
sometimes it is wise to choose 8,=0 (usually, 3;+...+B;=1) so that the function
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(I)=BI(D1(0L)+ e +qu)k(a).

integrates all requirements of the criteria ®,...,®;, and to consider ®(ax) as the
only performance criterion. The coefficient 8, reflects the relative “importance”
of the criterion ®,, v=1,...,k.

In practice, the “true” values of (3, are usually unknown beforehand, especially
if these criteria are of different natures and refiect different aspects of the system
behavior. Moreover, it is clear that in engineering problems, the “importance”
of different criteria depends on their values, and it seems reasonable to choose
different $3, for different parts of the set D.

In practice, the designer usually starts with choosing some values of 8,...,B4,
and then finds the best point o’ cotresponding to the minimum value of ®(e)
for @ €D. If some values of ®,(a’) prove to be unsatisfactory, then the designer
chooses B1,...,B, again. Clearly, such a procedure cannot be called optimization
in the strict sense of the word; rather, this is a kind of exhaustive search whose
completeness is not guaranteed.

B. Optimization of the most important criterion

In this case, the criterion considered by the designer to be the most important
is retained, while all the others are replaced by constraints.

Let ®;(a) be the basic criterion. Then we have to choose constraints
®5*,...,®%F* and consider the problem of finding the minimum

@, (ay>min

under the following constraints:
a§5a]$a§*’ jzl,...,r,
Cisfla)y=CH*, I=1,....1,
P ()=D¥*, v=2,.. .k

>

It is clear that in this case we also face the problem of choosing criteria
constraints ®¥* that cannot be reasonably solved without special calculations.
If, however, there exists a reliable method for choosing ®**, v=2,... k, then
by using this method one can also select ®1*, thus determining the set of feasible
points D. In principle, it is possible to search for the best point in D taking into
account only one criterion. However, as a rule, this way is not the most effective.

Besides, the majority of engineering problems contain several meaningful
criteria, some of them conflicting. This is a feature of design problems.

C. Consecutive optimization of all criteria

There are several algorithms allowing consecutive improvement of all criteria.
Here we_consider an_approach_that is_often called the method of successive
concessions.
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At the first step, we determine the minimum of ®;(a) for «ED. Let us denote
this minimum by min ®;. Then, a “concession” h; is chosen for the criterion
®; and the corresponding criterion constraint is specified:

B+ =min D, +h;.

At the second step, the minimum value of ®,(«) is determined for €D,
under the constraint ®;(a)=®*¥*. Upon calculating the minimum of &, and
choosing a “concession” h,, we specify the second criterion constraint

®§*=min (I)2+h2.

At the third step, the minimum value of ®3(a) is determined for
a€D, ®)(a)=P}* and P,(a)=P3*, and so on.

Finally, the minimum value of ® () is found for «€ED, ®(a)=D%*,...,
@, (a)=P}*,. If min @, is attained at some point &' then this point is consid-
ered to be the best.

It is clear that the point &' depends on both the order in which the criteria
are enumerated, and on the choice of 4;,...,h—;. Besides, doubt always persists
that by making a concession somewhat larger one could have improved the values
of the rest of the criteria considerably.

The Choice of a Single Criterion

The issue of mathematical construction of a single (determining) criterion ®
is dealt with by decision-making theory (Larichev 1987; Fishburn 1970; Keeney
1972). In the general case, the problem is reduced to the induction of a partial
order on the set D or to the construction of a value (utility) function U(®,,...,®;).
This function must reflect the designer’s system of preferences, i.e.

U@dy,...,0)>U(di,..., 0.

if and only if the designer considers the point &” corresponding to the values
O, (a")=D; as being preferred to the point a’ that yields the values
P, (a')=D, to the performance criteria, v=1,...,k. If such a function U has been
constructed (Matusov and Statnikov 1981), then the problem of choosing the
best point reduces to minimizing the value function.

However, even in those cases where the mathematical conditions of the exis-
tence of the function U(®P,...,P,) are satisfied, its construction is a very serious
problem, since it requires much more information than the designer usually
possesses..However,.in the problems.of design, the best solutions can be found
comparatively easily by searching over the set of Pareto optimal solutions.



Multicriteria Optimization and the Parameter Space Investigation Method | 7

1-2. Systematic Search in Multidimensional Domains by Using Uniformly
Distributed Sequences

The features of the problems under consideration make it necessary to represent
vectors o by points of uniformly distributed sequences in the space of design
variables (Sobol’ and Statnikov 1981). In the following we consider this issue
in brief.

For many applied problems the following situation is typical. There exists a
multidimensional domain in which a function (or a system of functions) is
considered whose values may be calculated at certain points. Suppose we wish
to get some information on the behavior of the function in the entire domain or
in any subdomain. Then, in the absence of any additional information about the
function, it is natural to wish that the points at which the function is calculated
would be uniformly distributed within the domain. However, the question arises:
What meaning should be assigned to the notion of a uniform distribution? This
concept is quite evident only in the case of a single variable. By dividing the
range of the variable into N equal parts and locating a point within each of the
parts, we arrive at a sequence of N points (a net) uniformly distributed over the
domain under consideration. Unfortunately, in the case of several variables the
concept of uniformity is not so evident. If for each of the variables we make a
partition similar to that done in the case of a single variable, then for n variables
we get N" points (a cubic net). However, the concept of uniformity should be
independent of the number of points, and, besides, the use of nets containing
so many points seriously complicates the solution of practical problems.

Weyl was the first to give the definition of the uniformity.

Let us consider a sequence of points Py, P,,...,P;,...belonging to a unit r-
dimensional cube K. By G we denote an arbitrary domain in K", and by Spy(G)
the number of points P; belonging to G (1=i=N). A sequence P; is called
uniformly distributed in X', if

. SnMG)
lim
N>

=V(G) (1-5)

where V(G) is the volume of the r-dimensional domain G. (If, instead of the
unit cube, a parallelepiped II is considered, then the right-hand side of (1-5)
transforms into V(G)/V(Il).)

The meaning of the definition is quite clear: For large values of N, the number
of points of a given sequence belonging to an arbitrary domain G is proportional
to volume V(G):

Sn(G)~NV(G).

Figures 1-1 and 1-2 demonstrate different uniformly distributed sequences in the
cubic net and the Py-net discussed in the Addendum.
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Figure 1-2 Improved net for n=2 (N=16).

In solving engineering problems one must commonly deal not with K", but
with a certain parallelepiped II, and, hence, transit from the coordinates of the
points uniformly distributed in X" to those in I1. Let us formulate the following
statements (Sobol’ and Statnikov 1981).

Lemma 1. If points Q; with Cartesian coordinatc;s (i1 ..,9;y) form a uniformly
distributed __sequence in_ K", then_points «' with Cartesian coordinates
(a,...,00) where
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ai=at+gaft—a¥), j=1,2,...,r, (1-6)

form a uniformly distributed sequence in parallelepiped II consisting of points
(@y,...,0,) whose coordinates satisfy the inequalities a¥=a;=a}*.

Proof. Let us choose an arbitrary parallelepiped I1,CII specified by inequalities
a;=o;=0;. According to (1-6), there exists 3 one-to-one correspondence between
the points of I1, and those of parallelepiped IICK", which is specified by inequal-
ities

Hence, the number of points o‘ell,, denoted~by Sn(Ip), is equal to the number
of points Q,EIl. The latter is denoted by Sy(Ilp). Since the volumes of the
parallelepipeds are equal to

- T w—a; V()
V(Ily)= n(a, ), V()= gLy v

respectively,

lim Snv(I1o) Su(ID
m —l m

Now N N

V()

’V(ﬁ) VD).

This completes the proof of the lemma.

If among the points o, . forming a uniformly distributed sequence in
I1, we choose all the pomts belonging to a certain domain GCII we obtain a
sequence of points uniformly distributed in G. Let us prove this formulation.

Lemma 2. Let o',...,o/,... be a sequence of points uniformly distributed in IT,
and GCII be an arbitrary domain whose volume is V(G)>0. If among the points
o', one chooses all the points belonging to G, then he arrives at the sequence
of points uniformly distributed in G.

Proof. Let o1,...,a'v be the first N selected points. If the number of the last
point is N’ (i.e., a’v=a"") then Sy'(G)=N.

Let us choose an arbitrary parallelepiped [1oCG and denote by Sn(Ilp) the
number of the points from a‘l .,a'~ belonging to ITy. Then Sy(ITp)=Sn(y),

since those of the points a!, aN that do not belong to G, cannot belong to
ITy. Hence, as N, and hence, N ', tends to infinity, we have

Swllo)Snilllo) N SyiMo) ~_ N' V(L)

N N N N SyG) VG
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This completes the proof of the lemma.

The extent of uniformity of a sequence may be estimated using the known
characteristics presented in the Addendum, which also cites some additional
requirements to the uniformity of the distribution of the first N points of a
sequence. The requirements are of considerable importance, since these N points
are used in practice. It is desirable that N not be too large, since otherwise too
much computer time is needed.

The practical advantages of using more uniform sequences/nets are as follows.
If we wish to solve a problem (for instance, to obtain the Pareto optimal and
feasible solutions sets) with a prescribed accuracy, then the use of a more uniform
sequence assures a higher convergence rate. However, if the time allowed for
solving the problem is very short, and hence, N is small, then the problem cannot
be solved in this way. Nevertheless, using more uniform sequences one may
distribute the points in such a way that they would represent the whole domain
G satisfactorily. As aresult, the designer would have sufficiently reliable informa-
tion about the problem under consideration.

In the following discussion, we consider two different classes of uniform
sequences whose uniformity characteristics are among the best presently known.
These are the so-called LP,-sequences and the novel P.-nets. The necessary
definitions, descriptions of properties, and the methods for calculating the coordi-
nates of the points of LP,-sequences, are presented in the Addendum.

1-3. Parameter Space Investigation (PSI) Method

In Section 1-1 we formulated the problem of multicriteria optimization and
defined the feasible solutions set D, which is constructed using the values of
®F*, v=1,...,k, and some other constraints. Now we proceed by describing the
parameter space investigation method allowing correct determination of ®%*
and, hence, of the feasible solutions too.

The.parameter (design-variable) space investigation method involves the fol-
lowing three stages, see Fig. 1-3.

Stage 1. Compilation of the test tables with the help of a computer.

First, one chooses N trial points ol,....a" from G, see Section 1-2. Then,
all the particular criteria ® (') are calculated at each of the points o', and
for each of the criteria a test table? is compiled so that the values of
d,(ah),..., D, (o) are arranged in the increasing order, i.e.

d (a)=d (a2)=...=D (a¥), v=1,... .k 1-7

2Sometimes’it'is'called an ordered test tablen Il an unordered table the columns are formed of
the values of d>v(ai), i=1,....,N, v=1,....,k. For example, sec Table 2-1.
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where iy, i,...,iy are the numbers of trials (a separate set for each v). Taken
together, the k tables form a complete test table. In the following discussion,
the latter is called the test table>.

Stage 2. Preliminary selection of criteria constraints.

This stage envisages the interference of the designer. By analyzing tables
in Equation (1-7) in turn, the designer specifies criteria constraints ®%*, (It
should be noted that the described method is convenient for a designer in
practice. Actually, the designer has to consider one criterion at a time and
specify the respective constraints.)

All ®%* are the maximum values of criteria ®,(a), which guarantee an
acceptable level of the object’s operation. If the selected values of ®%* are
not maximum, then many interesting solutions may be lost, since some of the
criteria are contradictory. As a rule, the designer may put ®%* equal to a
criterion value ®,(a) whose feasibility is beyond doubt. However, if he starts
by determining the maximum possible value of ®3* then he has to pass to
Stage 3.

Stage 3. Verification of solvability of problem (1-4) with the help of a com-
puter.

Let us fix a criterion, say @, (o), and consider the corresponding table (Eq.
1-7), and let S be the number of the values in the table satisfying the selected
criteria constraint:

®, (a1)=...<®, (a") <D=, (@). (1-8)

One should choose the criterion ®,, for which §; is minimum among the
analogous numbers calculated for each of criteria P,,.

Then criterion ®,, is selected in analogy to ®,, and the values of
QVZ(ail),...,deZ(ais:) of ®@,, in the test table are considered. Let the table
contain S,=S$; values such that <I>,,2(a'}')sfbi’§, 1=j=S§,. Similar procedures
are carried out for each of the criteria. Then, if at least one point can be found
for which all inequalities (1-3) are valid simultaneously, then the set D defined
by inequalities (1-1)—(1-3), is nonempty, and problem (1-4) is solvable. Other-
wise, one should return to Stage 2 and ask the designer to make certain
concessions in the specification of ®$*. However, if the concessions are highly
undesirable then one may return to Stage 1 and increase the number of points
in order to repeat Stage 2 using extended test tables.

The procedure is to be continued until D proves to be nonempty. Then, the
Pareto optimal set is constructed in accordance with the definition presented in

3Fragments of the test tables are presented in Sections 1-4 and 6-1.
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Figure 1-3 Flowchart of the algorithm.

Section 1-1. This is done by removing those feasible points that can be improved
with respect to all the criteria simultaneously.

Let us consider the case where it is difficult to decide whether the value of a
®** js maximum. Commonly, one is not sure whether the values of ®,(a) from
the interval CIJ‘,(E)SCDV(a)s(i)t* are feasible. (Here (fJ’,'j* is the value of the vth

criterion for which the values Q)v(a)><i>;',‘* are known to be unacceptable.) In
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such a case one has to go to Stage 3 and construct the feasible solutions set D,
under the constraints ®**=@ (a), and the corresponding Pareto optimal set P.

Further, the set D is constructed under the constraints <i):’,‘,* v=1,...,k, as well
as the corresponding Pareto optimal set P. Let us compare ®(P) and ®(P).

If the vectors belonging to ®(P) do not improve the value of the vectors from
®(P) substantially, then one may put ®¥*=® (). Otherwise, if the improvement
is significant then the values of the criteria constraints may be set equal to
d')’,f*. In this case, one has to make sure that the optimal solution thus obtained
is feasible*. If the designer is unable to do this, then the criteria constraints are
put equal to their previous values, ®}*=® (a). This scheme can be used for
all possible values of ® () and P%*.

The Selection of Trial Points

In all the examples presented in this book, as well as in solving other problems,
points O, Q»,...,Q;,... of the LP,-sequence were used.

According to Lemma 1 from Section 1-2, the Cartesian coordinates of a point
0:=(gi1, gi2,--.,qir) are used to calculate from Equation (1-6) the coordinates of
a point o’=(a,...,a}) belonging to parallelepiped IT:

af=af+gott—a¥),j=1,...,r,i=1,...N.

When using the points of the LP.-sequence, one should refer to Table A-1
presented in the Addendum. The table allows for solving problems with the
number of design variables r=20 and the number of trials N<2!6. Sobol’ and
Statnikov (1981) contains a table where r=51 and N<2%°. Table A-6 corresponds
to the novel P,-net where r=20 and N=2!2.

According to Lemma 2 from Section 1-2, these trial points form a sequence
uniformly distributed in G, as N—.

At Stage 3 we find g points belonging to D where g=N. The method for
constructing and selecting these points (see Lemma 2, Section 1-2) guarantees
that g tends to infinity as N tends to infinity, and the sequence of the points is
uniformly distributed within D.

Remark. Besides the LP,-sequence and the P.-nets, there exist some other useful
sequences and nets, several of which are discussed in the Addendum. Prior to
solving a concrete problem one cannot say with certainty which of them is most
suitable. Much depends on the behavior of criteria, the form of functional and
design-variable constraints, and the feasible solutions set geometry. Hence, for
the scheme presented in Figure 1-3, other sequences (nets) can be successfully
used too.

4To-dothis-the-designer-will-possibly-have-to analyze the mathematical model anew or, if
necessary, conduct additional experimental studies.
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Examples of the Feasible Solutions Set Construction

Suppose two design variables, o; and o, may be varied and the quality of an
object is evaluated by criteria @, and ®, depending on the design variables (see
Fig. 1-4). Itis required to minimize the criteria. We also suppose that a sufficiently
large number of design solutions o and (o), i=1,...,N, represented in Figure
1-4a and b by dots may be generated by computer (®(P) in Figure 1-4b is the
set of Pareto optimal solutions in the criteria space). Owing to the presence of
the three functional constraints Cf¥,, C¥%,, and C¥*, (Fig. 1-4c) the initial set
of solutions reduces. The figure shows domain GCII satisfying the functional
constraints. Within the criteria space shown in Figure 1-4d, ®(G) is an image
of G, so that C¥p=P(C*,), i=1, 2, 3. Having determined G, the designer
seeks the set of feasible solutions D. Figure 1-4f illustrates three dialogues. The
first one is represented by ®%* and ®%* where the second subscript indicates
the number of the dialogue, and D;=(J. At this stage the designer makes a
concession. The second dialogue is represented by ®%%, and ®%%, and D=
again. The third dialogue is represented by ®%% and ®%%; here D370, D3CG.
In Fig. 1-4¢ ®%*and ®%*are inverse images of ®%* and ®%* in the design-
variable space.

Figure 1-5 shows schematically three dialogues for another problem. The first
one is represented by criteria constraints 1% and ®%¥, which form the set
®(D,), whose inverse image in the design-variable space is D;. The second and
third dialogues are represented by criteria constraints ®¥*, and ®%*, and Ot
and ®%* forming the sets ®(D,) and ®(D3), respectively: D, and D; are the
inverse images of these sets. Upon analyzing D; the designer has decided that
it may serve as a feasible solutions set, that is, D3=D. Figure 1-5 shows the set
of Pareto optimal solutions ®(P) in the criteria space together with its inverse
image P in the design-variable space.

In Sections 6-1 and 6-2, we present various dlalogues together with the corres-
ponding sets of feasible solutions.

Figure 1-6 shows a disconnected and nonconvex feasible solutions set often
encountered in solving engineering problems.

The Complexity of Search

For sufficiently large values of N the property of uniform distribution of points
implies that y=V(D)/V(IT)=N'/N where N is the number of points «’'EIl, and
N’ is the number of points that have entered D. For many engineering problems
v<0.01, and the search for the solution is like seeking a needle in a haystack.
(In effect, vy characterizes the complexity of solution of the problems belonging
to the class under consideration.)

“Soft” Functional Constraints and Pseudocriteria

For many practical problems, there can be found “good” solutions that lie slightly
beyond the limits imposed by the constraints. If a designer is informed about



Multicriteria Optimization and the Parameter Space Investigation Method | 15

o
1
LULLLLLL L. (I)1
OC;G* L
°
4
I
1 .
a:“ // (L /-/ V.
* %
% &y Uy &,
a b
9* ¥ %% c**
1021 1o CZ,oo @, 2P
///»(//// 72/ ®¥
a** 7 Z C1 q)
1 V G ’
/
4
/ ' ~ %%
c ®¥
7 o 03,0
“1* N . $(6)
* ®%
ay % & ) %,
oy
* %
0
- (D)
3 *%
ou“ AP 77777777777X K ¢’1’1 —\ d(P)
o % a** o X% ¥ *x_ pRN
2 2 "2 @2’1 @2’2 (pz,z. o, P,

e

Figure 1-4 Procedure for determination of a feasible solutions set.

this, in some cases he will be ready to modify the constraints so that the “good”
solutions would be found inside the feasible solutions set. The question is how
to obtain such information.

Instead of the function f(a), whose constraints are not rigid (soft), we introduce
an additional criterion ®;.(a)=f; (o), which we will call a pseudocriterion.
However, to find the value of ®%%, one has to compile a test table containing
@, (o). By using the aforementioned algorithm together with the new test
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Figure 1-6 Disconnected feasible solutions set ® (D).
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table one can define ®%}, in a way preventing from the loss of interesting
solutions.

Strange as it may seem, in solving engineering single-criterion problems involv-
ing soft functional constraints, one has to pass to multicriteria problems in order
to find the feasible solutions set. This is due to the fact that ®%* may be
determined correctly only upon analyzing the test table.

In the general case, in solving a problem with soft functional constraints, one
has to find the set D taking all performance criteria into account, the functions
fi(a) being considered as pseudocriteria. In other words, one has to solve the
problem with the constraints

O ()=d¥*, v=1,....kk+1,...,n.

It was already mentioned that in order to “avoid multicriteriality,” attempts
were made to transform all criteria except one into functional relationships with
constraints of the form (1-2). It is clear that one cannot act in such a way because
it can lead to a considerable reduction of the feasible solutions set. Whenever
possible, the designer has to do just the opposite, viz, to transform the functional
relationships into pseudocriteria and then reduce the problem solution to the
analysis of the test table.

Investigation of Relations Between Criteria (Sobol’ and Statnikov 1981)

The results of the parameter space investigation method may be used for con-
structing the correlation matrix || r,., || where r,, is the cross-correlation coeffi-
cient for criteria ®,(a) and ®, (o). The matrix allows estimating the extent of
linear dependence between two criteria. For instance, if an element of the matrix
r,,=1, p#v, then the criteria ®, and @, are linearly related. Investigation of
the matrix may be helpful for analyzing the feasible solutions set.

The Variations of the Design-Variable Constraints

In solving optimization problems one has to specify design-variable constraints
a’f(*) correctly. However, this is not a simple matter as long as multivariable
and multicriteria engineering problems of high dimensionality are considered.
In Sections 1-4 and 1-6, we will show how this may be done.

Visualization of the Process of the Criteria and Design-Variable
Spaces Investigation

This is an important process allowing the designer to grasp the very physical
essence of a problem as well as to correct the mathematical model, the constraints,
etc. In_specifying boundaries a’}‘(*) it is useful to analyze the functions ®,(a),
since this allows us to decide whether the boundaries should be actually modified.
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Let us consider the problem of optimal design of a four-cylinder automobile
engine whose displacement volume is 1.6 I. Subjected to optimization were 18
criteria; 24 design variables were varied. Figures 1-7a—c show the values of
criteria @5, &4, and P, depending on a3. Here a3 is the pressure (in Kgf/cmz)
of the third piston ring on the cylinder wall; ®s is the mean oil film thickness
(in pm) under the third ring; ®,4 is mean heat conductivity (in W/mz-deg) of
the third ring; and P, is the minimal oil film thickness (in wm) under the third
ring. Criterion ®5 is to be minimized, while criteria ®;4 and ®;; are to be
maximized.

N=1024 trials were conducted, and 585 vectors were plotted satisfying the
functional constraints. By analyzing the plots the following conclusions were
drawn:

1. The system loses stability at a3=~4.40. Therefore, in the subsequent
analysis af was set equal to 5.0 (see Figs. 1-7a and c).

2. By analyzing the dependences shown in Figures 1-7b and c the designer
was able to determine the value of a%*.

In more detail the correction of design-variable constraints is discussed in
Sections 1-4, 1-6, etc.

The Required Number of Trials

As noted previously, unlike other optimization methods, the PSI method was
devised not only to solve a problem, but also to help formulate it. Therefore,
the number of trials N needed for constructing the feasible solutions and Pareto
optimal sets depends to a great extent on how the problem is formulated.

Also, it should be noted that N depends on the class of functions subjected
to optimization, the number of design variables being varied, the volume of the
parallelepiped under investigation, and the functional and criteria constraints. In
turn, the number of the functions may reach many dozens, and they may be
differentiable, nondifferentiable, nonconvex, discrete, etc.

As a rule, the number of trials was determined on the basis of a nonformal
analysis of the calculation results. Taken into account were the significance of
the problem under consideration, the time available for obtaining the optimal
solution, the quality of the mathematical model, the accuracy with which the
criteria had to be calculated, etc.

The need for a large number of trials is predetermined by the following
considerations. Since engineering problems are, as a rule, ill-posed, one has to
correct the mathematical model, the initial boundaries of the design variables
and the values of both functional and criteria constraints. Usually, 70-85% of
the total number of trials are “‘spent” to formulate an optimization problem. After
all the constraints have been determined, the optimal solution may be obtained
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by running a comparatively small number of trials. Taking into account the
importance of the problems to be solved and the expected effect of optimization,
in the majority of cases the designer has to agree to a comparatively large number
of trials, which sometimes may achieve several thousands.

This is the case primarily for batch and mass production of automobiles,
machine tools, speed reducers, etc., which are manufactured in large quantities
and for which the economy of metal and fuel as well as cost reduction are of
paramount significance. In all these cases the efficiency of multicriteria optimiza-
tion may be quite high, and it should be implemented with utmost care.

The experience accumulated in solving engineering problems shows that the
time spent in formulating and solving an optimization problem is fully compen-
sated by the results.

1-4. Example 1: The Choice of the Optimal Design Variables
of an Oscillator

Let us consider a two-mass dynamic model (Statnikov and Uzvolok 1990) shown
in Figure 1-8 where M; and M, are masses, K; and K are stiffness coefficients,
and C is a damping factor. Mass M, is acted upon by harmonic force Pcos(w ?)
where P=2,000 N and @=30 s™".

The equations of motion are given by

M X{+CXi—X3)+K X +K>(X1—X2)=Pcos(w 1),
MzX'z"*‘C(Xé—Xi)"‘Kz(Xz"Xl):O.

The system contains five design variables, a;=K;, a,=K,, az=M;, as=M,,
and as=C. We specify upper and lower bounds for each of the design variables
thus determining the parallelepiped II;:

1.1-10°N/m=a;=<2.0-10°N/m,
4.0-10*°N/m=a,=<5.0-10*N/m,
950 kg=a3=<1,050 kg,

30kg =a4=70kg,
80 N-s/m=a5=<120 N-s/m,
K
-, K1 2
n'AYAYA Y X
M M —_—
1 e m] 2
~c

L= P-cos(wt)

Figure -8 Two-mass dynamic model.
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and three functional constraints (imposed on the total mass and partial fre-
quencies):

fl(a)=a 3+a4<1, 100 kg,
357 =hH@=p1= \/5542{‘,
a3

27 s7=fy(a)=p,= \/%532{‘.

The following four performance criteria were optimized: the first mass oscilla-
tion amplitude X, 4, the total mass of the system M;+M,, and the dimensionless
criteria X;4/X 14, and w/p; characterizing certain dynamic properties of the system,
where X, is the static deflection of mass M, caused by force P.

Both the constraints imposed on f(et) and the lower constraints on f;(a) and
f3(a) are rigid. Conversely, the upper constraints on f>(a) and f3(a¢) may be
slightly varied by the designer. Accordingly, functional dependences f>(at) and
f3(a) should be transformed into pseudocriteria. They were denoted by ®; and
®,, and the above performance criteria by ®;—®g.

Analysis in I,

On the basis of the PSI method, 4,096 trials (N=4,096) were carried out in
I1; (see Table 1-1 for a presentation of a fragment of the test table). The first
portion embraces the 10 best models obtained for each of the six criteria, and
the other portion corresponding to the end of the test table presents the three
worst solutions for each of the criteria. For example, the 10 best solutions
(models) in the first® criterion are presented in order of decreasing quality: 2,912;
3,072; 480; 1,216;...; 2,768; 1,280; the three worst ones being 1,791; 2,751;
and 1,407. The best solution in the second criterion is 901. It is followed by
2,449; 2,402; 222;...; 3,555; the worst ones being 2,562; 3,007; 552; etc.

Dialogue 1: The following criteria constraints have been formulated:
Prr=40; P3*=32; P3*=1.5; P5*=1,030; d3*=1.3; d¥*=0.75.

Since no model has found itself in the feasible solutions set, three more
dialogues were conducted.
Dialogue 2: ®%*=41; ®3*=32; ®3*=2.0; PF*=1,040; Pi*=1.5;
DE+=0.80.

Thirty-five models have found themselves in the feasible solutions set.
Dialogue 3: ®%*=42; ®3*=31; ®¥*=1.9; P§*=1,030; P¥*=1.45;
P¥*=0.85.

SHere_representations_a?°'%;_o397% o0, ol-216; . o768, o1280; and 2,912; 3,072; 480;

1,216;...; 2,768; 1,280 are equivalent.
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Table 1-2

o P,(a) Dy(a’) ®;(a) ®y(a) ®5(a’) Dy(ar')

569 41.461 28.996 1.6263 1,018.4 1.3412 0.72358
1,425 40.488 29.238 1.5451 1,022.8 1.2236 0.74095
1,882 38.371 29.096 1.8115 1,022.6 1.2857 0.78184
2,325 41.942 28.485 1.6493 1,021.9 1.3958 0.71527
2,374 38.632 29.148 1.8256 1,024.9 1.3204 0.77655
2,753 40.520 29.101 1.6179 1,009.0 1.2633 0.74038
3,109 41.903 28.883 1.6530 1,012.0 1.3862 0.71593
3,361 40.559 29.605 1.6867 1,004.9 1.3211 0.73967

Twenty models have found themselves in the feasible solutions set.
Dialogue 4: ®%*=42; ®3*=31; P%*=1.85; P3*=1,025; Pi*=1.4;
bE*=0.85.

The feasible solutions set constructed using the PSI method contains eight
models. Table 1-2 presents the values of the criteria for all eight feasible models,
six of which are Pareto optimal. Models 1,425 and 3,361 were identified as the
best ones (see Tables 1-3 and 1-4). Having analyzed the results the designer
agreed to consider them as the final solution for the aforementioned parallelepiped
II,.

One of the ways of correcting design-variable constraints requires the construc-
tion and analysis of histograms of the design-variables distribution over the

Table 1-3
Results of investigations in IT; Results of investigations in I,
q)v d)(al,425) ‘b((!3'36]) q)(a2,753) ¢(a6,569)
[N 40.488 40.559 40.948 41.512
d, 29.238 29.605 29.899 29.306
o3 1.5451 1.6867 1.4539 1.3622
b, 1,022.8 1,004.9 989.18 1,001.2
[ 1.2236 1.3211 1.1352 1.1074
(o3 0.7410 0.7397 0.7326 0.7227
Table 1-4
Results of investigations in I1; Results of investigations in I,
o ! o33! o253 o555
o 1.584-10° 1.567-10° 1.562-10° 1.626-10°
a 4.840-10* 4.613-10* 5.164-10* 4.955-10*
o3 966.16 952.27 931.38 943.52
oy 56.621 52.627 57.803 57.690

s 82.012 91.104 80.974 70.775
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ranges of their variation. For vectors of the feasible solutions set D, the histograms
of distribution of their coordinates over the variation ranges of respective design
variables are constructed. For each design variable, the range of its variation is
divided into n equal parts (segments). If any of these segments contains at least
one trial from the feasible solutions set, these segments are marked by a black
rectangle. The domain of feasible values of the design variable o; is denoted by
[aﬁj; aﬁj’."] (see Fig. 1-9).

Figure 1-9 demonstrates histograms for the distribution of the eight feasible
models over the ranges of the design variables. The interval of variation of each
design variable was divided into 10 equal segments. Those segments containing
the feasible solutions [aﬁj; aﬁj’."] are marked with black rectangles.

Figure 1-9 shows that the fourth, sixth, and seventh segments in [a¥,a*]
incorporate models 1,882 and 2,374; 1,425, 2,753, and 3,361; and 569, 2,325,
and 3,109, respectively. The remaining segments contain no solutions. Figure
1-9 presents the feasible models distribution in II; for the remaining four design
variables.

From Figure 1-9 it follows that the feasible models for the second, third, and
fifth design variables lie near the boundaries of variation of af*, a%, and af%,
respectively. Intervals [a%, ap), (ap¥, af*] are “holes” caused by functional

and criteria constraints. As to the aforementioned design variables, the designer
may agree to revise the original constraints a3*, a¥, and o if the concessions
would result in improving the values of the criteria.

For example, it is important to know how much the feasible and Pareto optimal
solutions would be improved in the basic particular performance criteria if the
initial constraints [a¥, a**] are replaced by new ones [&F, &**].

In the general case, substitution of II; by new parallelepipeds may result in
the disappearance or shift of the “holes” owing to the formation of new combina-
tions of the design variables.

Let us consider the construction of a new parallelepiped II, for which
a¥=af—8% and af*=a}*+5%¥*. Here 8% and 3%* are the concessions the de-
signer has made with respect to the jth design variable (the jth coordinate). As
noted above, the final approval depends on the values of the performance criteria
attained within the new parallelepiped as compared with the original one. The
boundaries of the remaining design variables d‘}‘(*) stay the same as in II;.

For the parallelepiped I1,, I1;CII,, we have:

at=af,  afr=aty
&=af,  aFr=a¥*+d3%;
a¥=a3~8%, a¥*=a¥¥
ay=af, ay*=ad*,
63=0a3—8%, a¥*=a*

The boundaries of parallelepiped I, were specified by the inequalities:
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1.1-10°N/m=a;=<2.0-10°N/m;
4.0-10°N/m=a,=5.3-10*N/m;
930 kg=03=1,050 kg;
30kg=a4=70kg;
70N-s/m=os=<120N-s/m.

A A
x *%
ol | &, II,
X axX*
I i
> 1L 1 L L 1 1 I L 1 I 1 “** —I—I
5 Ir T T T T T 0 =t T 1 ¥ 5 4
ax* Qxx*
.D5 175
- ]
Q= 142 T,

Figure 1-9 Histograms of the feasible solutions distribution.
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Figure 1-9 shows the old, a%*, and the new &**’, design-variable boundaries
forming parallelepipeds II; and II,; also shown are the boundaries of the feasible
solutions &™) in I1,. For the previous functional and criteria constraints (see
Dialogue 4), the feasible solutions set contained 67 solutions, while II; included
only eight. In II,, 8,192 trials were conducted; the best results are presented in
Tables 1-3 and 1-4.

The following conclusions may be made:

1. The analysis of the feasible solutions in parallelepiped I, (see Table
1-2) has shown that for the initial functional constraints imposed on
Sile)—f3(ar), the feasible solutions set would contain only two vectors,
1,882 and 2,374. The remaining six vectors have found themselves in
the feasible solutions set owing to the transformation of the functional
dependence f>(a) into pseudocriterion ®;.

2. The analysis of Tables 1-3 and 1-4 has shown that the results of optimiza-
tion in II; were improved by correcting the design-variable constraints
for all four performance criteria ®s,...,®¢. Thus, vectors 2,753 and
6,569 from II, are undoubtedly better than solutions 1,425 and 3,361
from II,.

The design variables of the most preferred Pareto optimal vectors in II, do
not belong to II;.

The need for correcting both design-variable and functional constraints and
for determining the criteria constraints in the interactive mode, is typical for the
majority of applied optimization problems, especially those of optimum design.
By using the PSI method one can readily solve the problems of finding the
feasible solutions set.

1-5. Example 2: Automotive Valve Gear Design

The structural schematics of the valve gear used in the present-day automobile
internal combustion engines with a camshaft in the cylinder block, are rather
simple (see Fig. 1-10). Nevertheless, the choice of the mechanism’s design
variables is one of the most complicated problems one encounters in designing an
automobile engine. Conventional design methods fail to satisfy all the conflicting
requirements satisfactorily. As a result, the operational development of an engine
takes more time and becomes more expensive. However, the problem may be
solved efficiently using the PSI method (Genkin et al. 1983).

The motion of the links of a dynamic model used for estimating and choosing
the design variables of the valve gear of the majority of modern automobiles is
described by the.equation of longitudinal oscillation of the valve spring coils
(Korchemnyi 1981)
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Figure 1-10 Automotive valve gear. (1) Valve; (2) spring; (3) rocker; (4) push rod;
(5) tappet; and (6) cam.

%u 2ndu F a_u_a_26_2u
302 © 0d o B3 w?oE2

subject to the following boundary conditions

u(0,6)=0, u(1,4)=y($)
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where u(§,d) is the spring’s displacement from the static-equilibrium state when
the valve is shut; w is the damping factor (due to viscous drag) of the oscillations
of the spring; F is the dry friction force between the spring coils and the damper;
a is the speed with which disturbances travel along the spring (along the £
coordinate); ¢ is the rotation angle of the cam; w is its angular velocity; and y
is the valve displacement.

The spring vibration damper is made of a steel ribbon whose width is b and
thickness is A and which is actually a spring mounted within the valve spring
with interference 3.

To determine y(¢b) one has to use the equation of motion of the reduced mass
of the valve, M:

"y b 4 c xu+F0+Fr , ¢ au(l,d))
Zrt—/—2Z T——>2Z= +
Mo®  Mo? Mo?® Mo® o

where z=x—y is the valve drive elastic deformation; x(¢) is the tappet displace-
ment reduced to the valve; b is the valve gear conditional total viscous drag
coefficient; F is the valve spring preload; F, is the force due to the cylinder gas
pressure exerted onto the valve head; c is the valve spring stiffness; and C is the
stiffness coefficient of the valve drive.

The valve is initially at rest: y(0)=y'(0)=0. The perfection of the valve gear
design is estimated using the following performance criteria.

Criterion ®; characterizes the maximum gas flow rate through the valve that
is proportional to average lift y,,. The larger y,,, the higher the engine power
and its economical operation. The maximum y,, is practically equivalent to the
maximum tappet average lift, which may be found at the stage of the kinematic
calculation of the mechanism. This quantity is used as the performance criterion

74

¢1=xm=ﬁ f xdd
b;

where &; and ¢y are the cam rotation angles corresponding to the beginning and
termination of the theoretical valve lift (determined when ignoring the drive’s
elastic deformations). Note that the attempts to increase x,,, may have an adverse
effect on other criteria characterizing the possibilities of a practical realization
of the mechanism and its operability.

Criterion ®, is numerically equal to the minimum radius of the flat tappet for
which the contact line length (equal to the cam width /) does not decrease for
any relative position of the cam and the tappet:
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Here, e is the tappet axis displacement with respect to the cam center.

Criterion ®, should be minimized, since this would allow decreasing the
overall dimensions of the cam pair as well as its mass and inertia.

Criteria @3 and ®, are the extreme values of the tappet acceleration analogue6:
®3=xax, P4= | ¥min |- Commonly, xpn corresponds to the top of the cam.
Since ®; is approximately proportional to the maximum force of inertia acting
onto the cam, and ®, to the maximum force of inertia applied to the valve
spring, both criteria should be minimized.

Criterion @5 is equal to the maximum static contact stress at the cam top:

. (Fot cXma)i*
> l(xmax +x"min+ r 0)

where A is a factor depending on the Young moduli of the cam and tappet
materials; i is the valve rocker arm transmission ratio; and ry is the radius of the
initial circle of the equivalent cam. In designing valve gears, ®s is to be made
as small as possible. For a plane flat tappet this quantity depends mainly on the
cam profile.

Criteria ®¢ and ®; allow preliminary estimation of the correct choice of the
valve gear design variables. Criterion ®¢=m,+m,+m, where m,, m;, and m, are
the masses of the valve, the tappet, and the push rod respectively. ®¢ should
be made as small as possible.

Besides decreasing the specific quantity of metal, this helps to decrease
the valve’s reduced mass, thus affecting the dynamic properties of the valve
gear. The effect may be evaluated with the help of criterion

®,=2m) ! \J(C/M—(bZ/4M?2), which is the valve gear natural frequency and
should be maximized.

Criterion ®g characterizes the valve spring fatigue safety margin. The larger
Py, the less the probability of the spring’s failure.

Criterion ®g represents the maximum elastic deformation of the valve drive
Zmax, Which is proportional to the maximum force applied to the mechanism.
The latter operates the better the smaller ®g.

Criterion @, is equal to the absolute value of an analogue of the valve velocity

SHere, the acceleration analogue (velocity analogue) is the second (first) derivative of the tappet
displacement with respect to. angle of the cam rotation.
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at the instant it hits the seat, [y},|. It defines both the impact intensity and the
maximum stresses in colliding parts. To a considerable extent, this criterion also
characterizes the possibility of repeated opening of the valve due to its bouncing
after the strike against the seat. This unfavorably affects the valve’s longevity.
Criterion ®,¢ should be minimized.

The longevity of a cam pair greatly depends on the lubrication condition,
which is characterized by the derivative p’ of the “lubricant number” p calculated
at the cam rotation angle at which p changes sign. At this point, p’ must satisfy
the inequality p’'=540/w. Therefore, the following functional constraint was
used:

(&) +2X"(d)| 540
cp”:MZ—ﬂ— for |ro+x(d)+2x"(d)|=0.

The functional constraint ®,=z,,;,=0 assures absence of breakings in the
kinematic chain of the valve gear.

Of greatest importance for the solution of optimization problems are the valve
gear design variables defining the tappet’s law of motion x(¢) (see Fig. 1-11).
In constructing the law one should use piecewise-polynomial functions only,
regarding as design variables the values of the corresponding function and its
three derivatives at the points where either x(d) or x'(¢) or x"(¢b) attains extreme
values. Curve x(¢) is composed of six arcs, three of which correspond to the
valve lift and the remaining three to its downward travel. The aforementioned
design variables specify the conditions for matching the arcs that form the x(¢)
curve and assure that it is uniquely defined. If the curve is symmetric, then one
has to specify 13 design variables (see Table 1-5).

It was found that not all the combinations of the design variables assure the
desired behavior of the curve x(¢) and its derivatives. Therefore, a functional
constraint has been introduced that requires that the sign of x"'(¢) remain constant
within each portion of the x(¢b) curve. Table 1-5 presents all the design variables
chosen in formulating the optimization problem.

The problem was solved in several stages. At the stage of preliminary calcula-
tion, the expediency of transforming functional constraints ®;; and ®,, into
pseudocriteria was revealed, and the validity of the functional constraints imposed
onxi', i=1, 2, 3 was checked. Of the total number of 2,048 models (points of
design-variable space) 40 were included into the test table. Thus, the efficiency
of the tappet’s law of motion specified in the form of a piecewise-polynomial
function was demonstrated. The laws of motion corresponding to the models
presented in the test table are characterized by more favorable profiles of the
tappet velocity and acceleration curves as compared with the initial model (the
prototype) a!.

Optimization.of the intake valve design variables was reduced to carrying out
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Figure 1-11 Law of tappet motion. (1) Curve of the tappet lift; (2) curve of the tappet
velocity analogue; and (3) curve of the tappet acceleration analogue.

seven numerical experiments on a computer. These differed in the number of
design variables being varied. In the first experiment a5, a;7, o3, and o3 were
varied. In the second experiment, the values of these design variables remained
unchanged and equal to the values of the corresponding design variables in the
initial model . In the seventh experiment o; was also kept constant.

For the design-variable values of the initial model, we took the design variables
of the presently available intake valve drive of the valve gear of a V8, 180 hp
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automobile diesel. It was necessary to construct the feasible solutions and Pareto
optimal sets and find within the latter a model that would be better than the
initial model a'.

The first-experiment design-variable domain is presented in Table 1-5. A total
of 2,048 trials were carried out. The performance criteria were calculated for
the trials that were not discarded owing to the functional constraint in x}'. Of
the 2,048 trials, 40 models have satisfied the constraint and were included into
the test table (omitted here because of its large size). The criteria constraints
were found using the PSI method. Those of the 40 models that satisfied the
criteria constraints have formed the feasible solutions set D. There are six such
models that belong to the Pareto optimal set. The fact that of the 2,048 trials
only six appear in the feasible solutions set is explained by the rigid functional and
criteria constraints, which, evidently, cut off comparatively small disconnected
domains from the parallelepiped. Upon analyzing the Pareto optimal models
table the designer could readily define the most preferred one. It proved to be
model o*?*. Being insignificantly worse than model a! in criteria @, and P,
the model a??* exceeds &' in all other criteria. Thus, the fatigue safety margin
increased by 14%, the contact stresses at the cam top decreased by 10%, and
the impact velocity decreased by a factor of almost 2.2 to become less than the
theoretical value defined by the cam profile. Besides, the maximum positive and
negative accelerations have decreased by 9% and 4%, respectively.

In the experts’ opinion, model o?? is, on the whole, undoubtedly better than
the initial ! model. This conclusion was confirmed by comparing the calculated
kinematics and dynamics of the mechanisms corresponding to models a' and
a??*. The model a*?* acceleration curve is much smoother than that of model
a! (compare Figs. 1-115 and a), the smoothness affecting the mechanism’s
operability favorably. The maximum stresses in the model a*** valve spring are
smaller by 20% than in the case of model ! (see Figs. 1-12b and a, respectively).
The discontinuity of the kinematic chain due to negative tappet accelerations
is practically absent, and the premature contact of the valve and the seat is
eliminated.

In the second experiment, 15 design variables were varied. Similarly to the
first experiment, 40 models entered the test table, and the feasible solutions and
Pareto optimal sets contain practically the same models as in the first experiment.
The values of all criteria except @5 and ®;¢ are almost equal for the first and
second experiments. However, the values of criteria @5 and @ obtained in the
first experiment are somewhat better.

By comparing the results of optimization in the two experiments we conclude
that, if possible from the viewpoint of manufacture, the design of the push rod
and the valve spring should be modified in accordance with model a?>* obtained
in the first experiment. However, it is worth mentioning that the design was
mostly improved due to_the modification of the tappet’s law of motion, which
for model @*** was the same in both experiments. Therefore, the use of model
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Figure 1-12 Dynamics of a valve gear. (1) Corresponds to the stresses (1) in a moving
coil; (2) corresponds to the stresses (1) in a stationary coil (3) static stress (1); (4) valve
drive deformation (Z); and (5) conditional minimum allowable deformation of the valve
drive (Z7).
o??* constructed in the course of the second experiment (in which the specific
features of mass production were taken into account to a greater extent) gives
practically the same results.

The effect of the variation of design-variable constraints on the performance
criteria was analyzed in the subsequent four experiments.

Table 1-6 shows the results of the intake and exhaust valves optimization.

Model a??* surpasses model o' in all the criteria, except ®,, which, however,
is one of the most important performance. criteria. Therefore, the seventh experi-
ment was conducted with the objective of improving ®; without a considerable
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deterioration of the remaining criteria as compared with model a??*. The analysis
of the test table has shown that all the criteria cannot be improved simultaneously,
since, for instance, ®; and &g, Py, B are conflicting criteria. However, the
analysis of the Pareto optimal models has shown that the deterioration of ®; in
model @??* as compared with model a! is due to the value of design variable
o in &?** being smaller than in model . It was decided to put a;=7.3 as in
model a!. After that, 2,048 trials were conducted, which allowed us to find a
model possessing the desired properties. This is model a!+%%* (see Table 1-6 and
Fig. 1-12c). Actually, this model improves the initial model a' in all criteria.
Unlike models a' and a??*, its kinematic chain stays continuous. Besides, for
model a!*%63 both the valve drive maximum deformation and the intensity of
the valve spring coils vibration are smaller.

Thus, despite the fact that the initial models a! for both the intake and the
exhaust valves corresponded to sufficiently good designs, and the boundaries of
the design variables, taking the mass production specific features into account,
were rather narrow, the use of the method of multicriteria optimization has
allowed a substantial improvement in the kinematic and dynamic characteristics of
the mechanism. Models a??*, a'%, and " notably surpass the corresponding
models a'.

1-6. Specific Features of the Optimization Problems Formulation Using
Finite Element Models

The finite element method (FEM) is widely used in numerous engineering prob-
lems of fluid mechanics, heat transfer, dynamics, strength, etc. However, the
specific features of the problems make it necessary to modify the multicriteria
formulation of optimization problems (see Section 1-1), since some basic criteria
cannot be formalized. At the same time, without allowing for unformalizable
criteria one cannot guarantee correct results. Usually, the criteria are related to
optimal product manufacture technology, aesthetics, and similar aspects. As a
rule, unformalizable criteria may be taken into account in analyzing the geometri-
cal shapes of parts, units, structures, etc.

Problem Formulation and Its Specific Features (Statnikov et al. 1993)

Let us consider a finite element model of an object to be designed and a system
of design-variable, functional, and criteria constraints (1-1)—(1-3). We define
D as a set of vectors o' satisfying the constraints. Note that D is determined
using formalizable criteria ®,,...,®; and functional dependences.

Let the set D contain p elements for each of which the geometrical shape of
the object under consideration may be generated. In visualizing and analyzing
the set, the designer takes the remaining (unformalizable) criteria @y 1,...,Prim
into account, that is by considering the geometry, he tries to find whether an
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element belonging to D is actually feasible. This results in the construction of a
new feasible solutions set D, DCD, which is often much smaller than D.

Then the optimization problem reduces to finding the optimal vector o on
the feasible solutions set D. As is well-known, the optimal solution is commonly
sought on the Pareto optimal set PCD.

In the problems under consideration the geometrical shape of an object is
calculated using the design variables of each of the points o', i=1,...,N. The
finite element model must be modified accordingly. Since the number of trials
is large, the model should be modified automatically. This may be done by using
various methods for modifying the shapes of the curves and surfaces (Bezier
1987) as well as by using automatic finite element mesh generators.

An Example of Formulation and Solution of an Optimization Problem

Figure 1-13 shows the structure subjected to optimization. This is a plate rigidly
fixed along the contour 1-2 and freely supported along the contour 3-4. The
loads are applied along the contour 5-6 and are represented in the form of
distributed forces whose intensity g,(x), g,(x), g.(x) is specified in such a way
that the resultant forces and moments are not affected by a variation in the
contour length.

The designers have defined the following performance criteria:

®,(a)=w; — min,
D,(a)=w, — max,

Ws+W,
q)3(a)=_|___i.2___6_|_, max,
Ws—W,
¢4(a)=_|_i__6_|__) min,
Xs

®5(a)=m — min

where w; and w; are the first and second natural vibration frequencies respectively;
W5 and W are the displacements of points 5 and 6 in the direction of z-axis; x¢
is the coordinate of point 6; ®; and @, characterize the average linear and angular
displacements of the line 5-6 points; and m is the plate mass. The stress-strained
state of the structure is defined by the Mises maximum equivalent stress

A)=ona=[o]

where [o] is the allowable stress.

Since the functional constraint [o] is not rigid (because the structure may be
manufactured of different materials), f{or) should be represented in the form of
pseudocriterion Pg(0) =0 ax-

Thus, the criteria vector has the form
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Figure 1-13 The structure being optimized (a plate).

O(a)=(P(a),... Ds(av)).

Varied are 10 of the coordinates of points 2, 3, 4,5, 7, 8,9, 10, 11, 12, 13,
14 and also the plate thickness. Points 7-14 are used as reference points for
obtaining curves 2-3, 4-5, 6-15, 1-15. The design-variable boundaries define the
I1, parallelepiped.

Each point from the design-variable space corresponds to a separate finite
element model.

Platelike four-node plane elements possessing both bending and membrane
stiffnessyare used:yCalculationsof-eachysolution o' is accompanied by automatic
generation of a new finite element mesh.
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Stage 1: Investigation of parallelepiped I1;. In IT;, 2,112 trials were carried
out. The four dialogues implemented in investigating the design-variable space
have provided the following criteria constraints ®**=(11.2, 60.0, 0.03, 0.05,
18.0, 250.0). These data were used for constructing the feasible solutions set
D(I1,) containing six design-variable vectors, all of which are Pareto optimal.
Figure 1-14 shows (against a black background) three most interesting solutions
of the plate (white color), the difference being in geometrical shapes of the
plate. These feasible solutions correspond to vectors 1,238, 387, and 1,353.
Figure 1-14 presents the corresponding values of the performance criteria and
design variable ag (the plate thickness). This design variable is rather important
for analyzing the results. The complexity of the problem of determination of
the set D is demonstrated by the fact that the ratio of the number of feasible
vectors to N is a small quantity of the order of 0.003.

Optimal solution 1238 (II4) 2278 (11,)
&, 10.91Hz 2] 1.18 Hz
&, | 61.65Hz $, | 66.59Hz
@, | 0.138 M &5 | 0120m
&, | 0.036 rad &, | 0.022rad
&5 | 10.62 kg & | 9194 g
i 228.3 MPa @, 247.9 MPa
Og | 9.29 MM Qg | 12.98 MM

1203 (II,)

&, | 118 Hz @, | 10.35 Hz
&, | 66.33Hz ?2 65.39 Hz
o, | 0107w (&, | 0140m

&, 0.025 rad ®, 0.028 rad
P 10.72 kg Pg 10.7 kg
$; | 165.7MPa &g | 202.8MPa
g | 10.45 MM ®g | 9.71 MM
¢, | 1049 Hz b, | 10.64 Hz
P, 61.81 Hz [: ) 69.26 Hz
Py | 0.101 M ®3 | 0.125m
@, 0.042 rad &, | 0.017rad
®; | 12.53 kg ®s | 104 kg
@ 215,.6 MPa Pg 235.9 MPa
g | 9.85 MM Og | 11.34 MM

Figure 1-14 A portion of the representations album.
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Stage 2: Correction of design-variable constraints and construction of a
new parallelepiped II,. Figure 1-15 shows the histograms for distribution of
the six solutions in II; over the ranges of the design variables o, a5, as, ag,
and o. Having analyzed the histograms the designer was able to construct
parallelepiped II,, within which 2,378 trials were conducted subject to the

n n |
“1*:: 1 1 | —l[ T ; ll LI “1** II1

At A
wr..‘ | @T* H2

oy == 1 T 1 1 I
2 1
- >
Ot;:: —\ “{* H2
(x*IL 4 |.| ¥ I—— a**
gttt &3 1,
A x l- I A xx I
Cl«3 0 il X3 2
8 o ¥ 1 1 1 1 v 1 1 1 L] 8 1
A x|l J| A
ag‘u 1l ocg* I,
a*ll [l L 1 I L L _l a**
2%, R B B B s pn pa | I ]I1
" . .
40f 1 10 2

Figure 1-15 Histograms of the feasible solutions distribution.
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aforementioned criteria constraints. The effectiveness of the correction of
design-variable constraints is demonstrated by a substantial extension of the
set D (11,), which now contains 30 vectors (including 11 Pareto optimal ones).
The geometrical shapes of the three structures corresponding to vectors 2,278,
1,203, and 531 are shown in Figure 1-14. The histograms presented in Figure
1-15 demonstrate the feasible solutions distribution in IT,. Note that for $5<18
kg, the mass of feasible structures has increased in parallelepipeds II; and II,
from 10.62 kg to 12.558 kg and from 9.19 kg to 17.24 kg, respectively.
However, 11, does contain three vectors, 531, 1,076, and 2,278, for which
the structure’s mass is less than 10.62 kg, viz. 10.4, 9.6, and 9.19 kg,
respectively.

Stage 3: Visualization and analysis of the data. Thus, the investigations
carried out in I1; and II, have provided the set D=D(II1;)UD(I1,) containing
36 solutions. With respect to basic formalizable criteria ®,, ®,, and P, the
previous three solutions in II,, 531, 1,076, and 2,278, were assumed to be
the best ones. After the analysis of the geometrical shapes of the structures
corresponding to vectors from D (taking into account the technological features
of their manufacture), the feasible solutions set D appeared to contain eight
solutions. The designers have preferred solution 1,238 from II; (see Fig.
1-14). In such an important criterion as mass, this structure is inferior to the
aforementioned solutions from II,, since its mass is 10.62 kg. Also, vector
1,238 is not Pareto optimal in D with respect to criteria ®,—®s. This confirms
the conclusion that the optimal solution must be sought not on the Pareto
optimal setP but onD. Hence, the majority of multicriteria optimization
methods (Molodtsov and Fedorov 1979) are inefficient for the class of problems
under consideration, since they do not allow construction of the setD, and
hence construction of the feasible solutions set D. Thus, we see that the PSI
method should be used.

Conclusions

The use of the PSI method for optimizing various objects with the help of finite
element models allows correct construction of the structure shapes set. The resulting
solutions constitute the so-called album of the object representations or the album
of visualization of an object. Figure 1-14 demonstrates a fragment of the album.
In analyzing it one can take unformalizable criteria into consideration. As a result,
feasible solutions set D is determined. By analyzing multiple solutions of a structure
one can readily choose the best product manufacture process, including the optimal
processing technique, equipment, tools, and devices.

The creation of the representations album should be considered one of the
most important features of the class of problems under consideration. The album
helps the designer to analyze formerly unknown geometrical shapes of the struc-
ture subjected to optimization and thus facilitates the search for innovative solu-
tions.
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The efficiency of the PSI method for optimizing finite element models was
demonstrated by choosing the optimal design variables of the truck frame (see
Section 6-2). As a result, the frame mass was reduced by 28 kg and some other
performance criteria were improved (Velikhov et al. 1986).

Remark. In Statnikov and Matusov (1994), the search for optimal design vari-
ables of a platelike structure according to a multiple criterion is discussed. To
solve the problem the programs implementing the finite element method and
optimization techniques are used. The results of the comparison of the single-
criterion and multicriteria approaches are presented.

In the first case, the well-known I-DEAS and ANSYS software packages with
single-criterion optimization modules have been used. I-DEAS and ANSYS
are general-purpose finite element analysis program packages that are used by
engineers and designers around the world to analyze the stress, vibration, and
heat transfer characteristics of structures and mechanical components. To this
class of programs one should also relate such packages as MSC/NASTRAN,
COSMOS, NISA, and others.

In the second case, the MOVI software package implementing the PSI method
combined with the ANSYS finite element analysis program has been used.

The advantage of the multicriteria approach delivering important information
about all Pareto optimal solutions to engineers and designers is proved.

Statnikov and Matusov (1994) conclude that to come to the best decision it
is necessary to use multicriteria optimization in general-purpose finite element
analysis programs.

The PSI method allows:

1. Determination of design-variable, functional, and criteria constraints

2. Taking into account the design-variables effect on criteria

3. Finding the criteria whose values remain practically constant and may
thus be excluded from the further study

4. Singling out interdependent and conflicting criteria, etc.

The possibility of finding and evaluating the diversity of shapes of the object
under consideration as well as its visualization and analysis allows the designer
to take unformalizable criteria into account.

However, the determination of the feasible solutions and Pareto optimal sets
is of paramount importance.



2

Approximation of Feasible Solutions and
Pareto Optimal Sets

2-1. Approximation of a Feasible Solutions Set

We have introduced the notion of a feasible solution in the multicriteria optimiza-
tion problem. The algorithm discussed in Section 1-3 allows simple and efficient
identification and selection of feasible points from the design-variable space.
However, the question arises: How can one use the algorithm for constructing
a feasible solutions set D with a given accuracy? Since it is known that for the
problems involving continuous design variables and criteria the set D is also
continuous, the latter is constructed by singling out a subset of D that approaches
any value of each criterion in region ®(D) with a predetermined accuracy.

The possibility of approximating a feasible solutions set is illustrated by the
following example (Sobol’ and Statnikov 1981). Within the square

II={-0.5=a;=<0.5; 0=a,=<1}

criteria ®;=af+4a3 and ®,=(a;+1)*+(ay—1)? are specified, and are to be
minimized taking the functional constraint |(x2—a1 —0.375|=0.125 into account.
In this case, the set D is the square II from which a strip has been cut out (see
Fig. 2-1). The Pareto optimal set is composed of portions AA! and A%A3 of
hyperbola a,=—a;(3a;+4) 7!, segment A°A* of boundary a;=—0.5, and seg-
ment A'A° of boundary a;—a;=0.25. The method for obtaining the set has been
discussed in Bartel and Marks (1974). Also, the figure shows region ®(D) on
the criterion plane.

Points B’ on the criteria plane shown in Figure 2-1 are the images of points
A’. The exact trade-off curve (the Pareto optimal set) is shown in Figure 2-2,
while Figure 2-3 presents the trial points in ®(D). Judging by Figure 2-3a
obtained for N=64, one cannot be sure that the set ®(D) consists of two separate

43
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L
_— d)(D)/

05 A0 05 o 0 1 2 3 4 ®,

Figure 2—-1 Feasible solutions sets in the design-variable space, D, and the criteria
space, ® (D). The set P consists of arcs AA'A® and A?A%A*, while ® (P) consists of
BB'B’ and B’B°B*.
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Figure 2-2 Exact and approximate (dashed line) Pareto optimal sets of N=64. The
crosses indicate approximate Pareto optimal points for N=512.

parts; however, for N=256 this is quite clear (see Fig. 2-3b). We see that in the
latter figure, and more so in Figure 2-3¢ plotted for N=512, the feasible region
®(D) is approximated quite well.

Let €, be an admissible (in the designer’s opinion) error in criterion ®,. By
€ we denote the errors set {€,}, v=1,...,k. We will say that region ®(D) is
approximated by a finite set ®(D¢) with the accuracy up to the set €, if for any
vector aED, there can be found a vector BED, such that |®,(a)—P,(B)|<e,,
v=1,....k.

Hence, for not too large values of €,, region (D), or D, may be constructed
only if the number of points belonging to D is sufficiently large. The latter
circumstance leads to a considerable consumption of computer time. It is clear,
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Figure 2-3 Trial points approximating the feasible solutions domain for N=64, 256,
and 512.

however, that incomplete construction of the feasible solutions set may lead to
results that are far from best.

We assume that the functions we shall be operating with are continuous and
satisfy the Lipschitz condition (L) formulated as follows: For all vectors a and
B belonging to the domain of definition of the criterion ®,,, there exists a number
L, such that
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|q)v(a)_q)v(B)|SLvmax|a]_le
Jj
In other words, there exists L, such that

|®,()-D,(B) <L) il o~ Bjl.

j=

This is one of the least limiting conditions one encounters in the theory of
optimization. In practice, its violation means that one has to deal with a “patholog-
ical” function. Fortunately, in engineering optimization problems such functions
are extremely rare.

We will say that a function ®, () satisfies the special Lipschitz condition (SL)
if for all vectors « and B there exist numbers L, j=1,...,r such that

[P, (@)~ Du(B)|=< X L, o~ B}
j=1

where at least some of L, are different.
The class of functions SL is of interest because:

1. Class L incorporates all the functions belonging to class SL. (In the
majority of practical cases these classes coincide since the functions one
encounters in solving engineering problems have different sensitivities
with respect to design variables, and hence the constants L/, are different
t00.)

2. For class SL, the convergence rate of the approximation process is greater
than for the class with the Lipschitz condition (see Theorem 1 as follows).

3. The P,-nets (see Addendum) used for calculating criteria are optimal for
the class SL of functions (Sobol’ 1987).

Let us estimate the number of points of an r-dimensional P.-net, which is
sufficient for approximating ®(D) with a given accuracy for criteria ®,(a)eL or
® (a)eSL.

Theorem 1. If criteria ®,(a) are continuous and satisfy either the Lipschitz
condition or the special Lipschitz condition, then to approximate ®(D) to an
accuracy of € it is sufficient to have

(s
max2*<[LV]) ormax2’| 21—

e, [e.]
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points of the P.-net (Statnikov and Matusov 1985).

r .
Proof. Let [L,] (or > L)) be a dyadic rational number’ exceeding L, (or
j=1
r .
> L)) and sufficiently close to the latter, and let [€,] be the maximum dyadic
j=1
rational number that is less than or equal to €, and whose numerator is the same

r
as that of [L,] (or [ D, L]). For any a=(o,...,o,) we consider an r-dimensional
j=1
cube £y, with the edge length [€,)/[L,], ®EZL;,. The volume of the cube is given
by ([e,)/[L,])". Since this number is dyadic rational and its numerator is equal
to unity, it may be represented in the form ([e,V/[L,])"'= 27/2Y> where vy,>7 is
unknown and 7 is the subscript of the P.-net corresponding to the r-dimensional
cube K”. From the letter equality we get

2v=2"[L,]"1[e,]". @-1

According to the definition of the P.-net, any binary parallelepiped of the cube
K" of volume 27/2% contains 2" points from 2" points of the P,-net (Sobol’
1969). Hence, if vy, satisfies (2-1) then cube ¥4 contains 27 points. By the
Lipschitz condition and the definition of cube £y, the inequality

Iq)v(a) - q)v(B)l =€,

is satisfied for any point Bey, of the 27 points. Thus, an arbitrary value of ®, ()
may be approximated to the accuracy of €, by 2" points of the P,-net. The value
of T may be calculated using the formulas presented in the Addendum.

If for some v; and v; [€,)/ [L,,i]<[evj]/[L‘,j], then $%CE.J. Hence, by choosing
a value of # satisfying the equality 2"=max2", v=1,...,k, we get the finite e-

approximation ®(D,) of the set ®(D). In this case the inequality |®,(c)—
D, (B)|=e,, v=1,...,k, is satisfied where «EK", and B is one of the 2" points.

Remarks.

1. Generally speaking, the set of points approximating ®(D) may not belong
to ®(D), since it can incorporate the points with coordinates
P+ <D (a)=DP%*+¢, as well as the points that are not feasible due to
functional constraints. By transforming the functional dependences into
pseudocriteria @y j(@),..., Prsp () we get, in analogy to what was

"A dyadic number is a number of the form p/2™ where p and m are natural numbers.
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proved above, the approximation of the feasible solutions set ®(D) by
the points ®(a) whose k + p coordinates satisfy the functional and
criteria constraints to the accuracy of €.

2. The estimate of the approximation process convergence rate, considered
in the previous theorem, is of an a priori nature. In other words, having
specified the admissible errors €, of criteria ®,,, and knowing constants

r
L, (or 3 L)), one may approximate the whole of the feasible domain
j=1

with a given accuracy for any function corresponding to these constants.
To do so one has to calculate the criteria at the points of the P.-net the
number of which is specified by the theorem. However, this is an estimate
since it takes into account any, even the “worst”, function of the class.
Hence, for a concrete problem, the number of trials needed for the
approximation is less than the one provided by the aforementioned esti-
mate. Similar estimates for the problems of finding the absolute extremum
of functions satisfying the Lipschitz condition have been obtained in a
number of works by alternative methods. It is appropriate to mention
here that an interesting estimate has been obtained in (Sobol’ 1987).

The estimate of the convergence rate considered in Theorem 1 (as well as the
majority of a priori estimates used in approximate methods) is generally applicable
for the theoretical determination of the number of trials. However, it is, as a
rule, inapplicable for solving engineering problems. The number of points needed
for calculating the performance criteria may be so large that the speed of present-
day computers may prove to be inadequate. This difficulty may be overcome by
developing “fast” algorithms dealing not with an entire class of functions but
taking into account the features of the functions of each concrete problem.

For approximating a feasible region ®(D) such an algorithm may be constructed
in the following way. (Although all subsequent considerations presume the satis-
faction of the Lipschitz condition, they are valid as well for the special Lipschitz

r
condition if constant L, is replaced by >, L2).
j=1
Let the Lipschitz constants L,, v=1,...,k, be specified, and N, be the subset
of the points from D that are either the Pareto optimal points or lie within the
e-neighborhood of a Pareto optimal point with respect to at least one criterion.
In other words, ®,(a®)=®,(0)=®,(a’)+¢, where a’EP, and P is the Pareto
optimal set. Let also No=D\N; and €,>¢, where €, is a certain number defined
in proving Theorem 2.

Definition. A feasible solutions set ®(D) is said to be normally approximated
if any point of set N; is approximated. to.an accuracy of €, and any point of set
N to an accuracy of €.
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Theorem 2. There exists a normal approximation ®(D¢) of a feasible solutions
set ®(D) (Statnikov and Matusov 1989).

Proof. Let the values of criteria be calculated at N points of the P,-net, from
among which we single out the feasible solutions, Dy, and the Pareto optimal,
Py, sets. Also, let N7 be a subset of the vectors of N specified points whose
images are either Pareto optimal points or lie in the e-neighborhood of a Pareto
optimal point ®(B) with respect to at least one criterion. Besides, we put
N;=DN\N] and refer to D those of the N points that satisfy the functional and
criteria constraints to an accuracy of €.

Step 1. Consider an arbitrary point @EN3. Let Kb=|® ()~ ®,(B)—¢,|. (f

a¢D then ®,(B) is replaced by P%*.) Let us place a at the center of cube

Kz whose edge length is 2KP/L,. For any aEK; we get

|®,(0)— D, ()| <L, max|o;—o,]<KE. If the cube’s edge length is min2KP/L,
J v

then the latter inequality holds for all v. Let us perform the operation for all

points from Py and choose the cube Kz edge length glin min2K®/L,. Then we
Py v

arrive at a cube with the center at & such that KzNNi=@. Upon constructing
the cube for any «EN) and finding K 1=agN,Ka we choose a point &EN] and
2

construct for it cube K4 with the center & and the edge length min 2e¢,/L,.
v

Then the inequality

|<Dv(&)—@v(a)lvamjaxldj—ajlsev, v=1,....k

K and K'=K,UK,. Consider the comple-

is valid for any «EK4. Let K= agv
1

ment K"\K! where K" is the initial cube/parallelepiped.

Step 2. Since K! is a union of cubes, K"\K! may be represented in the form
of a finite number of nonintersecting parallelepipeds. By defining K} and
UK} =K? in a similar way for all of the previous parallelepipeds II;, we arrive
4

at the region K 1 UKZ, which is a union of a finite number of cubes. The most
promising points of the region, belonging to N;, are approximated to an
accuracy of €. The rest of the points are approximated to a worse accuracy
€ and are of no interest in constructing the Pareto optimal set. It should be
noted that the Pareto optimal set on the second step must be chosen from the
union of the Pareto optimal set obtained on the first step and the set of feasible
points obtained during the second step.. The mth step is performed in a similar
way. After performing n steps and determining K, i=1,...,n, we get
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n .
K"\ U K'=(, that is, cover the whole K" with a union of cubes whose points
i=1

are approximated with a desired accuracy. This completes the proof of the
theorem.

It should be stressed that this algorithm is in many aspects analogous to
the one proposed by several authors in considering single-criterion problems
(Yevtushenko 1971).

However, here we can obtain a “faster” algorithm, since in passage to the

r r
class with the special Lipschitz condition, either ), Li=L,or > LL=<L,r.
j=1 j=1
Hence the cubes covering the whole of K" will be larger than in the case of the
functions subjected to the Lipschitz condition, and the whole of the cube will
be covered more economically. Besides, as noted, we are using highly uniform
P.-nets. This also results in a “faster” approximation of the feasible region.

2-2. The Pareto Optimal Set Approximation

Since the Pareto optimal set is unstable, even slight errors in calculating criteria
®, (o) may lead to a drastic change in the set. This implies that by approximating
a feasible solutions set with a given accuracy we cannot guarantee an appropriate
approximation of the Pareto optimal set.

Let us consider the example illustrated by Figure 2-4 where the feasible region
is represented by a triangle. Here the vertex ®(P) is the only Pareto optimal
point and the approximation of ®(D) is shown by dots and crosses. The Pareto
optimal set of this approximation (shown by crosses) is seen to differ drastically
from ®(P).

This instability is one of the major reasons why the problem of approximating
the Pareto optimal set proved to be rather complicated. Although the problem has
been tackled since the 1950s, a complete solution acceptable for the majority of
practical problems is still to be obtained. Nevertheless, promising methods have
been proposed for some classes of functions (Stadler and Dauer 1992; Lieberman
1991; Ozernoy 1988; White 1990). Let us consider some of them in brief.

Linear Problems

In this case, the theorems about the Pareto optimal set structure, in particular
the well-known Arrow-Barankin-Blackwell theorem, allow construction of the
set P in a straightforward manner (Gass and Saaty 1955; Kornbluth 1974).
However, in practice, methods generalizing the well-known simplex method of
linear programming are -used--Some.interesting methods for solving the problem
in question are suggested in (Steuer 1986; Dauer and Saleh 1992; Cohon et al.
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Figure 2—4 Instability of the Pareto optimal set.

1988; Benayoun et al. 1971). This issue is considered in the rather extensive
literature (Isermann 1977; Zeleny 1974; Zionts and Wallenius 1980).

Concave Problems

These problems are commonly solved using the Karlin theorem stating that the
Pareto optimal set coincides with the global minima set of the family of functions

k
of the form Y, A @(a) where \;+...+ =1, \;>0 (see, e.g., Karlin (1959)).
i=1
The following result concerning the structure of the Pareto optimal set in the
convex case is also used.

k k
SoW={®(@)] 2 \@ ()= \P(a”), «’ED};

i=1 i=1

k
M= U Sa0), A={(hr,... AN>0, 3 A1},

i=1

Then, the Pareto optimal set is contained in the closure of the set M.
The proof of this theorem is given in many references (e.g., Dubov, Travkin
and Yakimets (1986).
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Some of the most important results in the theory of multicriteria optimization
of concave functions are the formulations obtained by Kuhn et al. (Kuhn and
Tucker 1951).

Other Problems

Here, the results that concern the structure of the Pareto optimal set have also
been obtained (e.g., Da Cunha and Polak (1967)). The majority of methods for
approximating the Pareto optimal set in problems that are neither linear nor
concave are divided into the following two classes. The first class incorporates
the methods based on minimization of various functions (Steuer and Choo 1983;
Dyer et al. 1992; Benson 1992). Very often such functions are combinations of
k k
the criteria, such as [ > (\®)°1"* where s=1, A;>0, > \;=1 (Merkur’ev and
i=1 i=1
Moldavskii 1979; Gearhart 1979). The combinations may be represented by the
families of distances d(x*, ®(«)) where x* is an “ideal” vector, such as
x*=(0,...,0), and ®(a) is a point belonging to the feasible solutions set (Stadler
1988). Naturally, point ®(a’) corresponding to the minimum distance d, is a
Pareto optimal point. However, in the case under consideration, the set of points
realizing the minima of the combinations does not form the whole of the Pareto
optimal set. Therefore the major difficulty is related to finding the conditions
assuring density of the points (Kelley 1957) in the Pareto optimal set. The
density allows approximation of P. Thus, the approximation method discussed
in Molodtsov and Fedorov (1979) is based on the use of a special kind of criteria
k
combination. Summation of the conventional linear combination >, A;®(a) and

i=1
a certain “additional” function assures density of the points corresponding to the
minimum of the combinations in ®(P). In Molodtsov and Fedorov (1979) the
so-called ill-posed problem of the Pareto optimal set approximation is analyzed.
The solution proposed in the work is obtained using the Hausdorff metric, which
is discussed in the following. Similar approaches were employed in Popov (1981),
Tanino and Sawaragi (1980), Dubov et al. (1986). The possibility of using the
Hausdorff metric imposes certain constraints on the system of preferences of the
decision maker. Besides, in using the previous methods one has to find the
criteria combination global extremum to obtain a point belonging to P. Often
this may require too much computer time.

Some interesting results related to applications of methods of the class under
consideration are obtained in (Eschenauer 1988; Koski 1988; Ester 1987).

The other class comprises methods based on covering a feasible solutions set
with subsets of a special shape: cubes, spheres, etc. Owing to the conditions
imposedronsthe criteria; the.cubes/spheres are chosen in such a way that all the
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points lying within them were approximated with a required accuracy. One can
approximate a feasible solutions set ®(D) by covering it with the cubes and then
singling out the Pareto optimal points from the approximation of D. After that
by performing necessary operations, taking into account the fact that the problem
in question is ill-posed, one can construct the approximation of the Pareto optimal
set. The methods of this class are more versatile (as far as the types of functions
are concerned) than those of the first class. In Sukharev (1971) the problem of
finding the optimal strategy for covering a set K with identical cubes was solved.
It was also analyzed in a number of other works (see, e.g., Yevtushenko and
Mazurik 1989).

Next we present a second-class method that has been developed without either
using the Hausdorff metric or imposing any constraints on the designer’s system
of preferences. Besides, we use uniformly distributed sequences of points that
allow us to hope that the resulting algorithms for approximating the Pareto
optimal set are among the “fastest” ones. The only requirement is that the criteria
are continuous and satisfy the Lipschitz conditions (Statnikov and Matusov 1989).

Let P be the Pareto optimal set in the design-variable space; ®(P) be its image;
and € be a set of admissible errors. It is desirable to construct a finite Pareto
optimal set ®(P) approximating ®(P) to an accuracy of €.

Let ®(D,) be the e-approximation of ®(D), and P¢ be the Pareto optimal
subset in D¢. As has already been mentioned, the complexity of constructing a
finite approximation of the Pareto optimal set results from the fact that approximat-
ing the feasible solutions set ®(D) by a finite set ®(D,) to the accuracy of €, in
the general case one cannot achieve the approximation of ®(P) with the same
accuracy. This is due to the fact that the feasible point approximating a certain
P(B)EP(P) may be “knocked out” by another feasible point in selecting the
Pareto optimal points from the e-approximation of the feasible solutions set (see
Fig. 2-5). As a result, ®(B) is not approximated by any of the selected Pareto
optimal points. Such problems are said to be ill-posed in the sense of Tikhonov
(Vasil’ev 1981). Although the latter notion is routinely used in numerical mathe-
matics, let us recall it here.

Let P be a functional in space X, P : X—Y. We suppose that there exists
y*=infP(x), and V(y*) is the neighborhood of the required solution y*. Let us
single out an element x* (or a set of elements) in space X and its 3-neighborhood
Vs(x*) and call x§ a solution to the problem of finding the extremum of P if the
solution satisfies simultaneously the conditions x§EVs(x*) and P(x§)EV(y*). If
at least one of the conditions is not satisfied for arbitrary values of € and & then
the problem is called ill-posed (in the sense of Tikhonov).

An analogous definition may be formulated for the case when P is an operator
mapping space X into space Y. Let us set

X={@Ds PD)ia¥ ={P(Po), P(P)}
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®, |

Figure 2-5 Non-Pareto point ® () looks suspicious. The truly Pareto point ® @)
lies in its e-neighborhood.

where €0, and let P : X — Y be an operator relating any element of X to its
Pareto optimal subset. Then in accordance with what was said before, the problem
of constructing sets ®(D¢) and P(P,) belonging simultaneously to the €-neighbor-
hoods of ®(D) and ®(P) respectively, is ill-posed. Of course, in spaces X and
Y, the metric or topology (Kelley 1957) must be specified that corresponds to
the system of preferences on ®(D).

Let us define the V-neighborhood of a point O()eD(]) as Ve
={®(a)EP(]): | D, (a®)— D (a)|<€,, v=1,...,k}.

Next we have to construct a Pareto optimal set ®(P¢) in which for any point
O()EP(P) and any of its e-neighborhoods V, there may be found a point
D(B)ED(P,) belonging to V. Conversely, in the e-neighborhood of any point
P(B)EDP(P,) there must exist a point D(0)ED(P) (see Fig. 2-6). The set ®(P¢)
is called an approximation possessing property M.

An approximation ®(P¢) will be said to possess the M;-property if for any point
®(a’)EP(P) and any its e-neighborhood Vi, there exists a point ®(B)SP(Pe)
belonging to V.

Let there have been constructed ®(D,), an approximation of ®(D).
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Figure 2-6 Approximation of Pareto optimal set ® (P) by a finite set.

Lemma 1. If the conditions of Theorem 1 are satisfied, then there exists an
approximation ®(P;) possessing the M-property.

Proof. The lemma will be proved by analyzing the neighborhoods of the so-
called “suspicious” points from ®(Dy), that is, the points to whose neighborhoods
the true Pareto optimal vectors may belong. If we find new Pareto optimal vectors
in the neighborhoods of the “suspicious” points then these vectors may be added
to ®(P,). Taken together with ®(P,), they form the e-approximation of a Pareto
optimal set (Matusov and Statnikov 1987).

Let us determine the set of “suspicious” points. Consider ®(a)EP(P,), and
let

My ={®PB)EDD,) : Vv O,(B)= D, ()},
Mz={<I>(B>EM: :3v <I>V(B)—<I>v(a)5%}.

(Here, the number €,/2 has been taken arbitrarily. Instead of this, one can take
any number less than €,.) Let
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My=®DNMLIUDP,)), Ma=MUM5, M=UM,,.
o

Let us consider a point ®(a”)EM. If B(P,) contains no point ®(B) such that
P,P)=P,(x %—e¢, for any v, then D) is a “suspicious” point. The set of
suspicious points will be denoted by SM. It is easy to see that the points of ®(P)
that are not approximated by the set ®(P,) with the accuracy of € may lie only
in e-neighborhoods of vectors from SM (see Fig. 2-5). Thus, if we construct a
cube £,1 with the center at point a! and the edge length min2e,/L,, v=1,...,k,

for any point a'E€D, such that ®(a')ESM, then the cube may contain true
Pareto optimal points from ®(P), approximated with an accuracy of € by no
point from ®(P).

Let €, be small errors that can be neglected. Let us approximate ®(£,1) N
®(D) by the P.-net points to an accuracy of €', as before. (Since volume £t
is quite small as compared with K", the number of points needed for the approxi-
mation is rather small.) At least one of the points of the P,-net in £41 belongs
to the neighborhood VC %41 of a Pareto optimal point ®(a®) if such a point
does exist. Let us denote such a point from P,-net by ®(y). If ®(a?) is a Pareto
optimal point then ®(vy) definitely improves the value of at least one criterion
for an arbitrary point ®(a)ED(P,). If such a point P(7y) exists it is added to
d(P,). Conversely, L1 does not contain a point ®()ED(P), to an accuracy
of €'. The operation is repeated for all the vectors belonging to SM.

Let L)(I)(yi)u<1> (Pe)= P(P¢) and L_,l'yiUDe=D; where v’ is a point obtained

1 1

after performing the aforementioned procedure. Then ®(P¢) may contain points

that are not Pareto optimal and are to be discarded. As a result, we arrive at the

set ®(P), which is a Pareto optimal subset in ®(Uy'UD,) and €-approximation
1

of ®(P). This completes the proof of the lemma.

The approximation ®(P¢) thus obtained possesses the property M. However,
the inverse formulation is invalid in the general case, since ®(P¢) may contain
excessive points whose analysis would be fruitless.

The e-approximation of Pareto optimal set ®(P¢) constructed in Lemma 1, is
said to possess the property M, if there is a point ®(B)EP(P) within the e-
neighborhood of any point ®(a)EP(P,).

Lemma 2. There exists a subset ®(P¢) of the set ®(P,), which possesses the
property M.

Proof. Let ®(a)EP(P,); B be an arbitrary subset in {l,...,k}; and
Ny ={®PB)EPPYVVEB D ()=, (B)=D,(a)te, \/ VvE{l,... kNB
®,(B)= &, ()—¢€,}. As before, we start by investigating the neighborhoods of
the points a and B _for which ®(B)EN@q).

Let the condition V&EL,ND AyeLND such that
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D, (y)=d,(&)+e, VvEB where €, is small enough, be satisfied for all the P,-
net points belonging to cubes £, and £g and satisfying the previous requirement
for the feasible solutions set approximation. Then point ®(a) may be excluded
from ®(P), since its e-neighborhood will not contain any points from ®(P).
By carrying out a similar procedure for all ®(a)e®(P¢) we arrive at the set
D(P)CD(Pe) possessing the required property M,.

It can be readily shown that having performed these procedures (see Lemmas
1 and 2) and obtained ®(P¢), we have actually proved the following

Theorem 3 (Matusov and Statnikov 1985). ®(Py) is an approximation of the
Pareto optimal set ®(P), possessing the property M.

Thus, we have constructed the desired Pareto optimal set approximation®
shown schematically in Figure 2-6. However, we have already mentioned that
the problem of approximating the Pareto optimal set ®(P) is ill-posed in the
sense of Tikhonov. Also, we have pointed out that to solve an ill-posed problem
one must specify a metric/topology in the spaces where solutions are sought.
This metric/topology must reflect the system of preferences on ®(D). In this
connection, let us recall some definitions®.

A space X is called metric if for any pair of its elements x and y there exists
a function d, named the distance between the elements, possessing the following

properties:

1. dx, y)=d(y, x).
2. d(x, ¥)=0, d(x, y)=0 if and only if x=y.
3. d(x, y)=d(x, z)+d(z, y) for any x, y, and z.

Examples of Metric Spaces

n
Euclidean space for which d(x,y) = / > (x,-—y,-)2 weighted Euclidean space
i=1

with d(x,y) = 4 /i (pi (x,~—y,-))2, and the Hemming space for which
i=1

dx,y) = X |xi—yi.
i=1

A metric d is said to be adequate to the system of preferences defined on the
pairs of vectors (x, y) from the space under consideration, if inequality

81f necessary, the computer time needed for implementing this method may be shortened by
constructing only the set ®(P,) possessing property M;. Moreover, one may approximate set ®(P)
by the union ®(P)USM without obtaining D(P;).

?Sincesthisymaterialyisrof arrather theoreticalnature, it may be skipped by the reader interested
only in applications of multicriteria optimization.
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d(x, y)=d(x, z) implies that y is no less preferred than z. Here, x is the most
preferred vector from the region under consideration, and y and z are arbitrary
vectors.

Let us continue considering our problem. Clearly, for each concrete case one
has to consider a metric corresponding to the physical nature of the problem.
The metric is to be adequate to the system of preferences in the space under
consideration. In our opinion, there exists no metric that would be adequate to
the system of preferences on ®(D) in the general case. Even if it occasionally
does exist, its construction is more complicated than the Pareto optimal set
approximation. However, one may introduce a topology corresponding to the
system of preferences on ®(D).

A topology on the space X is such a system of its subsets 7 for which the
following conditions are satisfied:

1. The union of any number of sets from T also belongs to 7.
2. The intersection of a finite number of sets from T also belongs to 7.
3. XE 7 (Kelley 1957).

All the aforementioned spaces are topological. However, there exist numerous
topological spaces that cannot be made metric. Nevertheless, the topological
spaces both generalize and inherit several basic properties of metric spaces such
as closeness, the neighborhood properties, convergence, etc.

A topology may be specified at a given space in a variety of ways. Most often
it is specified by a system of neighborhoods for any point from X.

Let us define a topology T on X by specifying the neighborhood

We(x)={®(D) : VR®()EX IP(P)EDPD,) : |, ()~ D, (B)|=<€,\/
VO(y)EDDe) 3 PMEX : | Dy (v)—P,(m)|<€,, v=1,....k}

for any xeX.

The neighborhood W(y) for an arbitrary y € Y, and hence the topology 4 on
Y, ®(D)CY, is specified in a similar way.

Clearly, the topology introduced here is a Hausdorff topology satisfying the
second countability axiom (Kelley 1957). Hence, convergence in this topology
may be described in terms of sequences.

As is well-known, solution of an ill-posed problem reduces to the construction
of a regularizing sequence. In the present case this is a sequence of sets
®(P,j), j=1,...», such that for the corresponding sequence ®(D/) and any €’-
neighborhoods of sets ®(P) and ®(D), sets P(PJ) and P(DJ), starting from a
certain j; belong to the respective neighborhoods.

Suppose that in accordance with Lemmas 1 and 2 sequences ®(P¢j) and
&(DL)), PriCDi are constructed for the sequence of sets €/, j=1,.... Then the
following theorem can be proved.
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Theorem 4. Sequence P(P)) is regularizing.

Proof. From the formulated property M (which is valid for any term of sequence

d(P,j)) and the definition of the neighborhood W(P(P)) (W(P(D))), it follows

directly that the conditions of regularizability of the sequence are satisfied.
Thus the problem of constructing the Pareto optimal set is solved.

Remark. As mentioned previously, in a number of works the problem of the
Pareto optimal set regularization is solved using the Hausdorff metric defined
by the distance

d(A, B)y=max{sup inf p(a, b), sgg inf p (a, b)}
acA beB beB acA

where p(a, b)=max|a,—b,|, and a, and b, are the coordinates of vectors a and
v

b; A, B CX.

The class of the problems described by this metric is rather limited, since its
utilization for a somewhat general situation results, as a rule, in distortion of the
designer’s system of preferences because of, for instance, different significance
of the performance criteria. Besides, since a variation in p may affect conver-
gence, the question arises: Why is the Hausdorff metric to be generated by the
above or some other prespecified distance p(a, b)? Therefore, in the general case
one has to introduce a topology similarly to how it was done here. This topology
is a generalization of the Hausdorff metric. Roughly speaking, it operates in the
same way as the Hausdorff metric does without, however, distorting the design-
er’s system of preferences.

In conclusion of this section, we would like to note that prospects of the
methods similar to the one presented here are connected with the development
of “fast” approximation algorithms. Such algorithms can be based, for instance,
on considering the problems in which the criteria belong to a more “narrow”
class of functions as compared with the one we have studied. Thus, for a class
of sufficient number of times differentiable functions the convergence rate may
increase. Besides, the convergence rate may be increased by using the decomposi-
tion and aggregation methods discussed in Chapter 3.

2-3. Example of Approximation of a Feasible Solutions Set

Let us analyze the problem of approximation of a feasible region by considering
the following example (Sobol’ and Statnikov 1982). The vibratory system shown
in Figure 2-7 consists of two identical masses m;=m,=m connected by springs
whose stiffnesses are k;j=k,=k and ky. Such a system depends on the three
design.variables k; komand m-Suppose the design variables lie within the following
specified limits:
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Figure 2-7 Oscillatory system.
kK*<k=k**, k¥<ko<k}*, m*=m=m**. 2-2)

The system can perform free harmonic oscillations with two natural frequencies
w; and w;. We will suppose that 0=<=w;=<w,. The formulas for the calculation
of the natural frequencies are quite simple:

k k+2k,
©= \/; 0= /——m—" 2-3)

Such dynamic systems are considered in many textbooks on the theory of oscilla-
tions, (see, e.g. Den Hartog (1956)).

In designing an oscillatory system one has to choose the natural frequencies
in such a way as to avoid undesirable resonance phenomena. If the designer
wishes to decrease w, then he may introduce the criterion

_k+2ky

P, -

(2-4)

and assume that the smaller ®, the more perfect the system is.
Suppose.that alongside with.decreasing frequency w, the designer wishes to
decrease the mass of the system 2m. Then he may introduce another criterion
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<I>2=m (2—5)

and assume that the system is the better the smaller ®,.

Let us consider the criteria plane shown in Figure 2-8. To each set of design
variables (k, kg, m), there corresponds a pair of numbers ®; and ®, calculated
from formulas (2-4) and (2-5), and hence, a point on the criteria plane. The
same formulas allow one to find the set of points (®,, ®,) on the criteria plane,
which are calculated with the design variables (k, kg, m) varying within the limits
(2-2). The set is shown in Figure 2-8.

Consider the lower left-hand boundary of the set, formed by a segment of
hyperbola

D, D, =k*+2k. (2-6)

It can be readily shown that the points lying outside the hyperbola cannot corre-
spond to the best solution.

To prove this statement we choose a point B (see Fig. 2-8). By drawing
through the point a vertical and a horizontal line we get points B’ and B” belonging
to the hyperbola. Since the abscissas of the points B’ and B coincide (i.e., the
values of @, at these points are equal) and the ordinate of B’ is less than the
ordinate of B (i.e., the value of @, corresponding to B’ is smaller), the system
corresponding to point B’ is undoubtedly better than the one corresponding to
point B.

Similarly, the system corresponding to point B” (as well as to all points (except
B) belonging to the curvilinear triangle B'BB”) may be shown to be undoubtedly
better than the system corresponding to point B.

b, |
m FEE——

BII

_____ 4 B

| g
|

I A
|

0 i >
@1

Figure 28 Criteria plane.
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Hence, the best solutions should be sought among the systems corresponding
to points belonging to a segment of hyperbola (Eq. (2-6)). This segment, shown
in Figure 2-8 by a thick line, represents the Pareto optimal set.

Let constraints ®3* and ®%* be specified. In Figure 2-9 the set of points
meeting these constraints is shaded. The set of design variables (k, ko, m)
satisfying conditions (2-2) is a parallelepiped II in the three-dimensional design-
variable space, see Figure 2-10. The set of points lying within parallelepiped I1
and corresponding to curve (2-6) may readily be found. In fact, from Equations
(2-4), (2-5), and (2-6) it follows that k+2k,=k*+2k}§, and since k=k* and
ko=k¥ in I1 we have k=k* and ko=Fk§.

Hence, the desired set of points is determined by conditions

k=k*, ko=k%, m*<=m=m**

and represents an edge of parallelepiped II (see the thick line in Fig. 2-10).
Naturally, point (k=k*, ko=k¥, m=m**) lies on the edge.

Let us continue by finding the set of points in II corresponding to the shaded
region in Figure 2-9. From Equations (2-4) and (2-5) and inequalities
&, =P%* and P,=P%* it follows that

m=®%*  k+2ko=P¥*-m.

Together with (2-2), these equations define the portion of parallelepiped II that
is the feasible solutions set of points D (see Fig. 2-11).

Let k, ky, and m be varying within the limits 2 < k < 6, 1 = ky =< 4,
2 = m =5, and let us do the necessary calculations. In Table 2-1, the fragment

o, |
wel
) ] @ (D)
N
0 =
PF* P,

Figure 2-9 Feasible solutions set ® (D) in the criteria plane.
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Figure 2—-12 Approximation of ® (D) for N=128 and 256.

of an unordered test table is given, the first 32 trials being represented. After
128 trials the criteria constraints ®1* and ®3* proved to be equal to 4.63 and
4.8 respectively. Figure 2-12a shows that 128 trials do not suffice to obtain a
good approximation of the feasible solutions set in the criteria space. However,
for N=256 the approximation is quite good, since €;=€,=0.25 (see Fig. 2-12b).
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Table 2-1
o ®y(a) D,(ar) o ®,(a) Dy(a)
1 2.5714 3.5 17 1.3377 4.7188
2 3.4545 2.75 18 2.7595 2.4688
3 2.0 4.75 19 2.9764 3.9688
4 1.7838 4.625 20 1.5478 3.5938
5 2.32 3.125 21 5.0448 2.0938
6 2.0 3.875 22 2.5468 4.3438
7 5.3684 2.375 23 3.5385 2.8438
8 2.4308 4.0625 24 1.5862 4.5313
9 3.4634 2.5625 25 4.0206 3.0313
10 1.3247 4.8125 26 2.562 3.7813
11 3.434 3.3125 27 3.8082 2.2813
12 2.2553 2.9375 28 3.7412 2.6563
13 2.6197 4.4375 29 2.1504 4.1563
14 4.1714 2.1875 30 1.8899 3.4063
15 2.2034 3.6875 31 2.3312 4.9063
16 2.2718 3.2188 32 1.8199 4.8594




3

Decomposition and Aggregation of
Large-Scale Systems

3-1. Decomposition Methods

A large-scale system consists of a number of subsystems. For example, in a
truck, one can separate the following subsystems: the frame, driver’s cab, plat-
form, engine, transmission, and steering system.

For the overwhelming majority of machines, there are rather many expensive
units that can perform for a long time after the expiry of the normal period of
the machine operation. In the case of production of millions of machines such
as tractors, harvesters, motor cars, and machine tools, this leads to huge losses.
This is caused by many factors, for example, drawbacks in the design. Very
often, different departments of the design office engaged in creating a machine
optimize their “own” subsystems ignoring others. The machine assembled from
the “autonomously optimal” subsystems turns out to be far from perfect. A
machine is a single whole. When improving one of its subsystems we can
unwittingly worsen others. The subsystems are loaded in different ways and
work in different conditions. It is desirable that the basic, most expensive units
of a machine have equal durability and reliability indexes, be equally strong,
etc. To meet this goal, we are to be able to find solutions hierarchically consistent
with all subsystems. At present, such solutions are based mostly on the experi-
ence, intuition, and proficiency of a designer.

When designing machines, one has to deal with complicated mathematical
models. Very often, these models have many hundreds of degrees of freedom,
are described by high-order sets of equations, and the calculation of one solution
can take an hour or more of computer time. This implies that it is not always
possible to solve problems such as (1-1)—(1-4) directly (otherwise, we would have
no problem with large-scale systems). One remedy may be to split (decompose) a
large-scale system into _subsystems that can be easily optimized, and then to

66
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aggregate the partial optimization results to obtain nearly optimal solutions for
the whole system. This will allow a designer to determine requirements for the
subsystems so as to make a machine optimal as a whole, and, by this, justify
the proposals for designing different units of the machine.

The significance of using decomposition methods in solving optimal design
problems for systems of high dimensionality consists in a considerable savings
of computer time, whereas without using these methods many problems can not
be solved practically at all.

At present, there are many exact decomposition methods that can be applied
to solving problems of high dimensionality. Among them are Kron’s methods
(Kron 1963), the forces-and-displacements method (Goldman 1969), and the
method of dynamic stiffnesses (compliances) (Craig and Bampton 1968).

Kron uses two sources of information: equations and graphs. When partitioning
the system into subsystems, the graph of the system is first decomposed into
comparatively large subgraphs for their subsequent unification. These methods
are practiced on a large scale. In all these methods, when calculating each of
the subsystems, the influence of the cut-off part of the system is replaced by its
reaction. To obtain the solution for the whole system, we have to take into
account the solutions of the equations of all subsystems, as well as the compatibil-
ity conditions for forces and displacements at the points of cutting the system.

Baranov, in the appendix to the Russian edition of the book by Kron (1963),
shows that Kron’s procedures are equivalent to matrix transformations such
as the elimination of coordinates, introduction of additional unknowns, and
permutation of rows and columns.

Application of Kron’s methods to problems of mechanics has some features
due to the multidimensionality of the graph branches and elastic interaction
between inertial elements.

These methods are effective because they operate with subsystems matrices
whose order is considerably less than the order of the matrix of the whole system.
Note that Kron’s methods are exact decomposition methods in the sense that
they give the exact solution to the system. This solution can be obtained using
direct methods without decomposition. However, the decomposition essentially
facilitates the solving procedure. Apart from the exact methods, there are approxi-
mate techniques based on the decomposition. Next we consider some of them.

The Singular Perturbation Method
Consider a kth-order system of equations

x=Ax+F.

Within this system we separate m subsystems. Let us introduce a diagonal matrix
€.so.that eA=A, with the elements.of the matrix A being close to unity. Then
this system of equations can be represented by
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m
€,X}=K,X;+ z K,'ij‘*‘Fi, i,j=1,_m (3-1)
J=1j=i

where €; is the part of the matrix € corresponding to the ith subsystem. Small
parameters are included here as factors of the derivatives. The change of € from
a finite value to zero, or vice versa, leads to the change of the order of system
(3-1). Such perturbations are called singular.

Within the matrix €, let us separate its part € with the elements being close
to zero. Then (3-1) can be represented in the form

i=ﬂx9 Y9 t) (3‘2)
€&=g(x,y,1).

The order of this system is k=n + p, where n and p are the dimensions of
the vectors x and y, respectively.

Having assumed €=0, let us consider a more simple, degenerate system of
the order n:

=A%, J, 1), (3-3)
g(x, y,)=0,

where %(r) and j(#) are approximate solutions of system (3-2).

Tikhonov proved the theorem establishing the conditions that guarantee the
convergence of the solution of the degenerate system to the solution of the full
system, as €0 (Tikhonov 1952).

Aggregation of Variables

When studying systems with a large number of variables, we very often face
the necessity of using amalgamated variables (aggregated variables, macrovari-
ables) that are essentially less in number than the initial variables. In other words,
the original system §; with n-dimensional state vector X is replaced by the system
S, with /-dimensional state vector z, ! being considerably less than n. This
replacement is done to mitigate the difficulties of the analysis of the system S,
due to its high dimensionality. There are different interesting approaches to the
variables aggregation (Lukyanov 1981).

Weakly Coupled Systems
In some cases, the behavior of a whole system can be described in terms of

characteristics, of.its subsystems. In this.connection, we encounter the problem
of quantitative estimation of the presence of weakly coupled subsystems. Some
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of the estimates are given in Section 5-4. These problems are also studied in
Tsurkov (1988) and Pel’tsverger (1984).

In Pervozanskii and Gaitsgori (1979), one can find some widespread decompo-
sition methods for controlled systems.

Let us dwell on the possibility of using these methods to solve optimization
problems. For linear systems, it is advisable to use exact decomposition methods,
since in this case we obtain the same values of the performance criteria as when
performing direct calculations. If this way does not lead to reducing the time
necessary for the computations, one should use approximate methods. However,
when doing this, it is necessary to make sure that these methods are applicable
to the optimization problem, because even in case the approximate solutions of
the system are obtained with sufficient accuracy, the error in calculating the
performance criteria can appear to be unacceptably large. Therefore, we recom-
mend estimating the solution accuracy that provides an acceptable error in calcu-
lating the criteria. If one meets difficulties in obtaining such estimates, it is
necessary to calculate the values of the performance criteria for a restricted
number of design-variable vectors by using the exact and approximate methods
and, having compared the results, conclude about the applicability of the exam-
ined approximate method. A similar approach is described in Sections 5-2 and
5-3.

3-2. Construction of Hierarchically Consistent Solutions

We have dwelt on some methods of decomposition of large-scale systems. In a
number of cases, after having applied these methods, we can optimize a large-
scale system. However, for many systems, there are no effective methods similar
to those described previously. There are a number of restrictions in using these
methods. Even in the cases where these methods are applicable, the possibility
of optimizing a large-scale system is not guaranteed yet. The reduction in time of
calculating the system, though significant, can be insufficient for the optimization.

To solve this problem we can use another approach associated with considering
the whole system as a hierarchical structure (Statnikov and Matusov 1989). The
lower level of this structure comprises subsystems, whereas the higher level is
the system as a whole. In many cases, the optimization can be done more simply
at the lower level. Therefore, by using the results of the optimization at the
lower level and, by this, reducing the number of competing solutions for the
whole system, we can optimize the system in reasonable time. Such an approach
was proposed comparatively recently, and only the first steps have been made
in this direction (Krasnoshchokov et al. 1986). In particular, this is true for
the methods proposed here. Nevertheless, the obtained results can be used for
optimization of many large-scale systems.

Since the proposed approach is based on the optimization of the whole system
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through the optimization of its subsystems, we briefly describe the relation
between the criteria for the system and subsystems. There are three possibilities
for this relation.

1. Some of the criteria of the subsystem can implicitly affect the perfor-
mance criteria of the system as a whole, and very often, such subsystem
criteria are absent from the list of the performance criteria of the whole
system. This situation is typical for the majority of complex engineering
systems.

2. Some of the system criteria cannot be calculated at the subsystem level.

3. There are criteria that may be calculated both for the whole system and
its subsystems.

The first two items are sufficiently simple. The third item is the most compli-
cated.

To illustrate the last two items, let us consider the following example. In the
structure of a slotting machine (a slotter), it is natural to separate three subsystems:
the table, column, and hydraulic drive. The performance criteria for this system
are the metal consumption, vibration resistance, processing accuracy, wear resis-
tance of the guideways and tools, and dynamic forces in the junctions. All the
criteria (apart from dynamic forces that can be determined only at the system
level) can be calculated through the criteria of the subsystems: the table (the
mass of the bed, the vibration amplitude of the workpiece, and wear resistance
of the table guideways); the column (the mass of the column, the vibration
amplitude of the cutting tool, and wear resistance of the ram guideways); and
the hydraulic drive (the mass of the drive, the hydraulic cylinder diameter, and
leak-proofness of the hydraulic drive).

In what follows, we give three ways (approaches, schemes) of searching for
hierarchically consistent solutions in machine design problems. The first two
schemes (A and B) are intended for optimization in comparatively simple cases,
whereas the third scheme (C) is applicable to more complicated systems.

These three schemes do not cover all possible problems of machine design.
However, by combining these basic approaches we can obtain other different
methods for solving optimization problems for complicated systems.

The three methods have the following common features.

1. Itis supposed that some of the mathematical models cannot be effectively
optimized with respect to the whole criteria vector ®, because it takes
a great deal of computer time to formulate and solve problem (1-1)-
(1-4). However, the calculation of the values of particular performance
criteria @, needs a reasonable amount of computations.

2..The system,is“partitioned” into,subsystems. The couplings connecting
the subsystems will be called external. To separate some of the subsys-
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tems as autonomous, it is necessary to analyze the interaction of this
subsystem with all other subsystems, as well as the external disturbances
applied to the subsystem by environment. For example, in problems of
dynamics, to determine the external disturbances they use the D’ Alambert
principle, the general dynamical equation of D’Alembert-Euler, and
Lagrangian equations.

3. There are one or several criteria ®,(a”) of the ith subsystem that domi-
nate corresponding criteria of other subsystems. This means that decreas-
ing (increasing) the values of the criterion ®,(a”’) (by no less than a
certain amount €,,) entails decreasing (increasing) the value of the respec-
tive criterion ®,(B) for the whole system, compared with ®,(«). Here,
o and B are the design-variable vectors of the system, and a® is the
ith subsystem’s vector of design variables corresponding to the vector
a. This condition implies that the system contains one or several subsys-
tems that determine the quality of the system in terms of the vth criterion.

4. It is supposed that the subsystems can be optimized by using methods
of Chapter 1.

5. Let ¢ be the total time of calculating the values of ®,(a”), i= T,m, and
T be the time of calculating the value of ®,(«), where e is the system
design-variable vector corresponding to all a”. Then the inequality
t<T is supposed to hold.

The idea of the optimization of the whole system consists in the following.
First, when optimizing each (ith) subsystem, we obtain for this subsystem a
pseudo-feasible solutions set D', which, as a rule, is somewhat larger than the
true feasible solutions set. After this, we compile the vectors for the whole
system using the respective vectors from the sets D’. On the thus obtained domain,
we check whether the criteria and functional constraints of the system are satisfied
and, as a result, obtain the feasible solutions set D for the whole system. Finally,
we search for the optimal solution over the set D.

The main point of this idea is the item 3. Let us consider it in more detail.

We will say that the pseudo-feasible solutions set D' for the ith subsystem is
dominant if the condition a'” ¢ D' entails a¢D.

Assertion 1. In the systems satisfying the aforementioned conditions, there exist
subsystems and criteria ®,(a'”’) such that the corresponding pseudo-feasible
solutions sets D' are dominant.

Proof. Let ®, be a criterion satisfying the condition 3. The corresponding
criterion constraint is given by ®,(a)= ®%*. Here, as before, a” is the design-
variable vector of the ith subsystem determined by the vector a. Denote by
&l ** = (")) the constraint.on.the criterion @, for the ith subsystem. Let for
some B? & D', that is ®,(B)> ®.**, the inequality ®,(B?)=D\** +e, take
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place. Such B/ can always be chosen, since it is allowable to correct ®%* and
hence, ®.**. Then, by the condition 3, for any vector B, which the vector B
of the ith subsystem corresponds to, we have ®,(B)>®,(a)=D%*, that is, BeD.

This assertion makes it possible to discard the design-variable vectors a without
calculation of the whole system, if the corresponding subvector a” violates the
constraint @) **. In other words, the optimization of the whole system is reduced,
to a considerable extent, to the optimization of its subsystems. The schemes
given next are based on this idea. These schemes are presented in the order of
increasing their complication. We consider different relationships between the
design variables of the system and its subsystems, discuss basic possibilities of
simplifying the original model, the ways of determining external disturbances
for subsystems, etc.

Scheme A

Let us have the mathematical models of subsystems that can be optimized (in
reasonable time). We suppose that each component of the design-variable vector,
a=(a;,...,0,), of the whole system is a component of at least one subsystem
vector a'” and, on the other hand, any component of the vector &/’ is a component
of the vector a. Therefore, for each of the subsystems, the vector a” is uniquely
determined by the vector a.

Taking this into account, we optimize the whole system. For each of the
subsystems, we determine ®%** satisfying condition 3. Regarding these con-
straints we construct pseudo-feasible solutions sets D', see Chapter 1. For doing
this, within the parallelepiped II of the design variables for the whole system,
N points are generated (in accordance with Section 1-2), and for each of these
points, o/, j=1,N, the values ®,(a/”), i=T,m, are calculated. The value
@ (/" D) is calculated only if /¥ € D'. If it turns out that for any i and fixed
j» &/ € D', then, according to the condition 3, we will assume that o’/ belongs
to a certain set D that is then used for determining the feasible solutions set D,
D CD. Otherwise, o' ¢ D, and this vector is considered no longer.

For all &/ €D, we calculate the system as a whole, and also all ®,(a/).
Having done this, we determine ®**, v=1,k, and thereby, the feasible solutions
set D. If the set D tumns out to be empty (D=0), one should increase the number
N of the points generated within the parallelepiped II. After having found D in
accordance with Chapter 1, we construct the Pareto optimal set P.

It should be noted that if it is possible to approximate the sets D', the approxima-
tion of the feasible solutions set for the whole system can be constructed.

Example

Multicriteria optimization of cutter loaders (Dokukin et al. 1987). The mathe-
matical_model_was_taken_that described the dynamics of cutter loaders with
branching drive diagram and nonsymmetrical arrangement of cutting members.
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This model is represented by a high-order system of nonlinear differential equa-
tions with stochastic functions on right-hand sides. The calculation of the model
requires a lot of computer time, and for this reason, it is impossible to optimize
the cutter loader to a sufficient extent by using conventional optimization tech-
niques (the model contains 25 design variables and 20 criteria to be optimized).
In this connection, we decomposed the system into three subsystems: drives,
the arrangement of the cutter loader, and arrangement of the cutting tools on the
machine.

The performance criteria have been taken as follows. The first criterion, @,
reflects the unbalance of the actuator; the criteria $,—®5 characterize the nonuni-
formity of transmission loads when cutting the coal massif; ®¢ and ®; represent
the nonuniformity of the driving torque of the electric motor; ®g and $y give
the life expectancy of the transmission with respect to the fatigue strength; @
determines the probability of the electric motor reversal; ®;; and ®;, describe
vertical displacements of the goaf side and face side of the machine housing and
are used for estimating the stability. The criteria ®,3—®¢ characterize the varia-
tion of vertical displacements for each of the supports of the cutter loader, while
the others describe the excess over the limiting level of the support displacements.

After the optimization of the first subsystem with respect to the criteria ®p—
®y we obtained the pseudo-feasible solutions set that contained 14 models. For
these models, we calculated the criteria ®;;—®, related to the second subsystem.
The constraints for these criteria were satisfied by 9 of the 14 models. The third
subsystem was optimized with respect to the force unbalance of the cutting
member. Four of the nine models satisfied the constraint related to this criterion.
According to Scheme A, for these four models, we calculated the criteria related
to the whole system. After that we determined the optimal solution.

The optimization permitted us to reduce the dynamic load of the drive, to
make the cutter loader more stable, and to improve other performance criteria.

It should be mentioned, however, that this procedure is effective only when
applied to comparatively simple mechanisms, machines or their units. In more
complicated cases, the assumption concerning the relationship between the vector
of design variables a of the whole system and respective vectors o for subsys-
tems is not valid, and we have to use Schemes B and C. Here, the situations
are possible, when the design-variable vector of the whole system contains
components that are absent from the subsystem level. This can take place, for
example, if it is impossible to take into account correctly some external couplings
when calculating the subsystem. Therefore, these couplings are usually ignored.
Vice versa, among the subsystems design variables, there can be those weakly
(if at all) affecting the performance criteria of the system to be optimized. As a
rule, these design variables are not included in the list of design variables of the
whole system.

There.are-also-other-ways-for-obtaining optimal solutions for the considered
systems. For example, different criteria may require considerably different time
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for their calculations: say, the calculation of the ith criterion takes seconds, while
the calculation of the pth criterion requires minutes. In this case, we divide the
set of all criteria into n groups so that the time required for calculating criteria
of some group significantly differs from the time corresponding to criteria of
any other group. These groups are arranged in order of increasing computation
time. Then we optimize the system with respect to criteria of the first group,
and thus construct the pseudo-feasible solutions set D;. After this, for the models
from D;, we calculate criteria of the second group, determine criteria and func-
tional constraints, and construct the set D,. The process is repeated until the set
D,=D is constructed. Obviously, this procedure considerably reduces the time
of optimizing the whole system.

Scheme B

Unlike Scheme A, we assume here, that the original model is simplified so

that it becomes amenable to optimization. Here, external couplings between

subsystems are retained, and the simplification is due to either aggregation of

solutions for subsystems (this has been mentioned already) or aggregation of

internal design variables of the subsystems. For example, if the subsystem con-

tains masses my,...,m,, they (or part of them) can be replaced by the mass
p

M = > m;, p<n. This reduces the number of the subsystem design variables,
i=1

the criteria, as a rule, being modified.

Let the optimization of the simplified system be carried out, and the correspond-
ing feasible solutions set D be constructed in accordance with Chapter 1. Consider
the ith subsystem, i=1,m. External disturbances acting on this subsystem are
determined by taking into account design-variable vectors belonging to D.

Consider a vector vy €D and separate the components of <y that are used when
calculating external disturbances for the ith subsystem. These components form
the vector of external couplings, ¥, for the given subsystem. Given the external
disturbances, we calculate performance criteria ®,(a'”) and determine con-
straints @5 and pseudo-feasible solutions sets D' for each subsystem. Note that
when optimizing the ith subsystem, its internal design variables are not aggregated
but used in the form in which they are included in the original system.

By virtue of condition 3, the vectors a for which o? ¢ D' are excluded from
further consideration.

The obtained sets D' are unified to form a whole set. For simplicity, let us
assume that there are only two subsystems. Consider the aforementioned coupling
vector ¥. We separate all vectors a of D! and B of D? that have been obtained
when optimizing the subsystem under consideration by taking account of the
vector ¥, and form augmented vectors (a, 4, B). This operation is repeated for
all-other vectors, of -external.couplings,similar to 9. We call this operation
the concatenation of subsystems. If there are more than two subsystems, their
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concatenation is made in a similar way. As a result, we obtain the set of vectors
of the whole system D. At this point, we are to check whether the obtained
vectors satisfy all the criteria and functional constraints that were determined
when optimizing design variables corresponding to the simplified model. In the
general case, the set D reduces after this check, and we obtain the set DCD for
which criteria of the original system are calculated, and the feasible solutions
set D is found in accordance with Chapter 1.

It should be noted, however, that the set D can appear to be empty. This may
take place if, when optimizing the ith subsystem, we cannot construct the whole
feasible solutions set for this subsystem with acceptable accuracy. If D turns out
to be empty, one should go back to the stage of the subsystems optimization,
calculate a number of vectors a’/ € D' and check whether D is nonempty. This
has to be repeated until we obtain D # (J. However, if we succeed in constructing
approximations of the sets D', i=1,m, we can guarantee not only that D is
nonempty but also that DDD. The latter is established by the following assertion.

Assertion 2. The set D is an approximation of the feasible solutions set D, and
DDD.

Here we do not give the proof of this assertion. This proof is similar, with
the exception of some minor details, to the proof of Assertion 3 given later.

Note that attempts to simplify the original model by means of aggregating
internal - design variables of subsystems, provided external couplings are con-
served, are widely practiced in design. A modification of this scheme has been
used for solving the problem from Section 3-3.

Scheme C

Suppose the simplification of the original model corresponding to Scheme B
does not permit us to optimize subsystems in reasonable time. In this case, we
can try to achieve success by ignoring some couplings between subsystems or
aggregating these couplings as is done with internal design variables of subsys-
tems in Scheme B. As a result, the number of criteria can reduce compared with
the original model. The very criteria can appear to be altered too.

If such a simplification of the model permits us to optimize it, the solution
reduces to the application of Scheme B. If this is not the case, we suppose that
the system contains a sufficient number of design variables that influence criteria
of the subsystem in which they are included, and do not affect criteria of other
subsystems. By sufficiency we understand that each of the subsystems can be
optimized, provided the previous condition is fulfilled. This condition is also
necessary because, if it turns out that criteria of some subsystem depend on all
or almost all design variables of the whole system, it will be difficult to optimize
this subsystem.as.the whole system. If this condition is satisfied, we can optimize
subsystems using the following two ways.
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1. Suppose we can optimize the simplified system for fixed values of the
design variables not influencing the ith subsystem i=1,m. In other words,
we can optimize the simplified system in reasonable time, having fixed
the system design variables that do not influence criteria of the examined
subsystem. External disturbances acting on the subsystem are determined
as a result of computations related to the simplified model.

2. If the assumption of item 1 is not valid, the simplified model is not
considered. In this case we construct simplified models for each of the
subsystems. The simplification of the subsystem model is regarded as
acceptable if at least one of the subsystem performance criteria can be
calculated with sufficient accuracy and, in addition, the constraint related
to this criterion permits us to exclude from consideration a sufficiently
large number of design-variable vectors a. Having been considered
separately, such models of subsystems are not of practical interest. How-
ever, provided we have a model of the whole system and the conditions
defined above are satisfied, these models facilitate the optimization of
the whole system. Note here, that external disturbances acting on subsys-
tems are determined not from the model of the whole system, as it took
place previously, but from the very subsystems models.

Both in the cases 1 and 2, the subsystem optimization differs from that in the
previous procedures. Here, the design variables of external couplings of the
subsystem are not fixed but vary simultaneously with design variables of other
subsystems affecting the examined one.

So, let all subsystems be optimized, and for each of the subsystems, the
pseudofeasible solutions set D! ,i=1,m, has been obtained according to
Chapter 1.

We define the concatenation operation for the sets D/, j=frﬁ, as follows.
Denote by 51,2 the set consisting of vectors a= @V, a®), «a® € D!, a?®
€ D?, such that common (i.e., influencing both subsystems) design variables
included both in o'V and &® assume equal values. (If some design variables,
such as describing external couplings, have been omitted when calculating the
subsystem, they are added to a” and a® when constructing vector a). We will
denote the result of iterating this operation m times by D, ...,,=D and call the
set D the superstructure over the sets D’,...,D™.

This definition allows us to aggregate different subsystems into the whole
system by means of concatenation of their design-variable vectors.

Let the sets D/ be defined for all j=1,m. The set D consisting of the design-
variable vectors of the whole system a such that «’) € D/, j=T,m, is called the
pseudofeasible solutions set for this system.

Let us give the idea of the algorithm for constructing the feasible solutions
set-D.. Letus take two subsystems.of those obtained after partitioning the system.
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Suppose, there are n common design variables influencing the criteria of both
subsystems. We denote these design variables by a(” o, j=1,2. Let us take
an arbitrary vector ') € D! and fix the values of the components af",...,al"
of this vector. We assume that when probing design-variable spaces of the
subsystems, we use the points of P,-nets for each of the subsystems. Then, since
common design variables a(” .,a/) are first in each of the subsystems, they
will assume the same values at all points with identical numbers (see Addendum).

InD?, we find vectors a® whose first n components assume values equal (to
the spe01ﬁed accuracy) to the values of the respective components of the vector
o). After this, we concatenate the vectors a‘® with the vector a'?. As a result,

we obtain vectors a=(a, a?) € D1,2. If we find no vector a'® € D? that
can be concatenated with the vector a'? the vector a” is considered no longer.
Having done this operation with all vectors of D!, we obtain the superstructure
D 5. )

If there are m subsystems, the process of constructing the superstructure D is
similar. We are only to provide that the concatenation condition is satisfied.
After having constructed D we calculate the system only at the points of this
set.

Thus, the original model is calculated repeatedly. However, it is done only
on the set D. If the number of elements in D is not too large, the optimization of
the whole system in a reasonable time becomes possible. After having introduced
constraints ®** we obtain the feasible solutions set D.

Note that here, as in Scheme B, the case is possible where D turns out to be
empty. In this case one should repeat all the described operations until D#JJ.
However, D cannot be empty if one succeeds in approximating the sets D,
i=1,m. We denote these approximations by D'. The following formulation is
valid.

Assertion 3. The set D being a superstructure over the sets D', i=1,m, approxi-
mates the pseudofeasible solutions set, D, of the whole system with a prescribed
accuracy.

Proof. We will consider without loss of generality that there are only two
subsystems (m=2). For m>2, the proof is analogous. Let aP=@,...,
a”)) €D' (more exactly, a"’ belongs to a neighborhood of a pseudofeasible

solutions set of the first subsystem) and aﬁll), .,al ” be the design variables of

the first subsystem that influence the second subsystern criteria. The approxima-
tion of the set ®(D’), i=1,2, is constructed followmg the algorithm given in
Chapter 1, except for the following. In ®(D') and ®(D?), all points must be
approximated with the accuracy up to €”={e{’}, j=1,2. These € are chosen

s0 as to satisfy the condition that for any v= 1,k, a,BED, and €, the inequalities
|® (@) — DBV <e, j=1,2, imply |®,(a)—D,(B )|<€,. Here D is the set
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of design variables of the whole system that satisfy the constraints ®**, ¢, is
the admissible error for the criterion ®,. It is easy to show that € always exist,
due to the continuity of functions ®, and closedness of the domain D.

The vectors of the approximation of the set ®(D?) must approximate also any
values of the vector (a,,...,a.,) with the accuracy up to 8. ,...,8. respectively.

Here, 3., is the admissible error for the design variable a.. To obtain this
approximation it is sufficient to put ®;4;=a,, i =T1,n. Instead of cubes covering

the domain D (see the approximating algorithm in Section 2-1), one can take
parallelepipeds with the edges corresponding to coordinates o, being of the
length 5c,-- The lengths of the other edges are determined from the Lipschitz
condition, as in the case of cubes. This additional property is necessary for the
concatenation of design-variable vectors of different subsystems.

The concatenatlon results in the set of vectors o/=(a'V, @ (2)) with
](2) € D?. Therefore o € D. Similar operation is to be done for all vectors
o'V €D'. As a result, we obtain the set D that approximates the pseudofeasible

solutions set of the whole system with the prescribed accuracy. Indeed, let
a €D, a’ €D, and a® € D? are vectors corresponding to a. It is known
that (") and ®(a?) can be approximated by the vectors ®(aV) and B(a?),
respectively, with accuracy up to €/, where €7’ are specified beforehand. Hence,
®(a) is approximated by the vector ®(@)=® (&, &?), with accuracy up to €.

In case m>2 (m is the number of subsystems), we successively concatenate

the pseudofeasible solutions set for the ith subsystem with the result of concatena-
tion of corresponding sets for previous i—1 subsystems. When doing this, we
take into account the design variables that are common for the ith subsystem
and for at least one of the i—1 subsystems.

Corollary. The pseudofeasible solutions set D contains the approximation of the
feasible solutions set, D, for the whole system.

Proof. Indeed, let us calculate the whole system at the points of the setD.
According to Chapter 1, we determine the constraints ®¥*. Now it is easy to
see that the points of D satisfying the constraints ®3* just form the desired
approximation of the set of feasible design variables for the whole system. This
completes the proof.

In connection with the aforementioned, it is interesting to discuss the possibility
of reducing the number of vectors taking part in the concatenation of subsystems,
and by this, reducing the very set D on which criteria of the whole system are
calculated.

In systems that we usually deal with, the monotonicity, as a rule, takes
place, that is, performance criteria of the whole system, d)v(a)=<i>v(¢>,,(a(l)),

» @ (™)), monotonically depend.on @, ().
Let us establish the condition ensuring the possibility of reducing the number
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of the design-variable vectors. Let the design-variable vector of the ith subsystem
be a(i)=(a(1), o)), where a;) and o) represent internal design variables of
the subsystem and the external couplings design variables, respectively. Let us
consider ®,(a'”), a’ €D'. Let for any B(2), for which there exists the vector
BY=(aqy, Bz) € D', one can find the vector By such that
BY=B) By ED' and ®,(«)=D,(B?). In other words, the changes of
criteria ®,(a”) caused by changing the design variables of external couplings
can be compensated by changing internal design variables of the subsystem.
Then the following statement is valid.

Let & € D result from the concatenation of vectors aV,...,a™, where af?
€ D' and o ¢ P'(P' is the Pareto optimal set in D). Then ®(at) ¢ P(P), where
P is the Pareto optimal set of design-variable vectors of the whole system.

This formulation makes it possible not to concatenate vectors that do not
belong to Pareto optimal sets of respective subsystems. This does not influence
the Pareto optimal set of the whole system. As a result, we can construct the
set reduced in comparison with D, and it will be sufficient to carry out calculations
of the whole system at points reduced in number.

The main applicability condition for Scheme C requires the existence of a
sufficient number of design variables that do not influence the ith subsystem
i=1,m. Let us illustrate this condition by an example of a slotting machine'”
(unlike Section 4-3, here we consider another dynamic model of the machine).
We can indicate the subsystems design variables that are most essential when
calculating performance criteria for these subsystems.

The whole system contains 25 design variables: o, a3, as, a4 are the stiffness
and damping coefficients of the joint between the bed and column; a; is the ram
mass; o, o represent the stiffness and damping coefficients of the junction
between the ram and guideways; ag, o9, a9, a1y are the stiffness and damping
coefficients of hydraulic drive units; etc. When considering performance criteria
of a subsystem, one can conclude that it is impossible to calculate these criteria
regarding only the design variables immediately related to this subsystem. For
example, performance criteria of the column depend on the table design variables,
oy—ay4. Therefore, to calculate criteria for each of the subsystems, one should
take into account all system design variables influencing these criteria.

It has been established that design variables of the table do not influence the
hydraulic drive criteria. The column criteria depend on four design variables of
the hydraulic drive, ag, ag, a9, and o). Design variables of the column, in
turn, do not influence the hydraulic drive, but criteria of the table depend on the
column design variables (as, ag, o7). The hydraulic drive design variables do
not influence performance criteria of the table. It has been established that the
first subsystem (the table) contains 10 design variables, the second subsystem

10This material was kindly givenus by E:VuKhlebalov, the researcher of Experimental Research
and Development Institute for Metalcutting Machine Tools.
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(the column) contains 16 design variables, and the third one (the hydraulic drive)
contains seven design variables. Thus, each subsystem contains significantly
fewer design variables than the whole system, and the condition in question is
fulfilled. (In general, to investigate the influence of design variables on perfor-
mance criteria of subsystems or the system as a whole, one can use the methods
given in Sections 5-1 and 5-2.)

In our example, Scheme C is used as follows. After having optimized the
subsystems of the slotting machine, the set D' of design-variable vectors is
concatenated with vectors of D?, taking into account their common design vari-
ables, and then, with vectors of D3. The first and second subsystems are concate-
nated by their common design variables, a;—a;. Vectors of the resultant super-
structure, D, ,, are concatenated with vectors of the third subsystem by the
design variables ag—atj;. As a result, we obtain the set D for the whole system,
and then, the set D.

Thus, when describing Schemes A, B, and C, we have consecutively
considered the basic ways of simplifying the original model, depending on
relationships among design variables and criteria of subsystems and the whole
system. Many other ways of optimizing large systems can be obtained by
combining the schemes given previously. However, two important cases have
not been considered: when the very subsystems are large-scale systems and
cannot be effectively optimized, and when there is no mathematical model
of the whole system. Both these cases are typical for such machines as
airplanes, ships, spacecrafts, and motor cars.

In the first case, it is reasonable to optimize subsystems independently. For
the optimization of each of the subsystems, it is advisable to use one of the three
schemes described previously or their combinations. The resultant pseudofeasible
solutions sets for subsystems are to be aggregated to form the feasible solutions
set for the whole system.

In the second case, as has already been mentioned, it is impossible or difficult
to create a mathematical model of the system. For example, it is very difficult
to create the general model of an airplane that could be calculated in reasonable
time and, at the same time, would take into account all basic criteria (acrodynam-
ics, weight, dynamics, strength, economics, altitude, speed, different characteris-
tics of the engine). As a rule, they choose another way. They create the bank
of various mathematical models. In conformity with an airplane, these are aerody-
namic, weight, economic, and other models. Taken together, these models de-
scribe all basic criteria. Many of the models have common design variables and
criteria, these criteria often being contradictory.

Applying one of these aforementioned schemes (or their combination) and
obtaining the set D for the whole system as a result of concatenation are recom-
mended. Although it is practically impossible to calculate criteria of the whole
system.exactly, very. often_one can_evaluate the quality of the system using
indirect approaches, for example, experiments. Estimates of the perfor-
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mance criteria obtained thus can be used for optimization of the system over the
feasible solutions set D. Some other approaches can be found in Statnikov and
Matusov (1989). It should be noted, however, that by now, there are no satisfac-
tory optimization methods for the overwhelming majority of large-scale complex
systems. This circumstance stimulates the development of approaches similar to
those mentioned here.

3-3. Example: The Construction of Consistent Solutions to the Problem
of Calculation of a Car for Shock Protection

As has already been mentioned, optimization of large-scale systems envisages
the substantiation of the decomposition of the system (including the generation
of mathematical models for subsystems and finding out impacts influencing
the subsystems), the determination of constraints and criteria vectors for the
subsystems, finding the set of solutions consistent with all the subsystems, and
the search for the optimal solution for the entire system. Because of great CPU
consumption required for calculating the criteria vector of the whole system, the
procedure of searching for the optimal solution must be organized so as to reduce
the number of calls for the system as a whole when calculating its separate
criteria and other characteristics as much as possible. This is demonstrated by
the example in question (Bondarenko et al. 1994).

Cars of serial production must meet modern requirements concerning reliabil-
ity, safety, noise level, etc. For example, there are different norms of testing
cars for shock protection. These norms require that the car body acquires no
damage after having been hit by a block head that has mass equal to that of the
car and moves at a speed of 8.9 km/h on a horizontal plane, at an angle of 30
degree to the longitudinal axis of the car, and at a height of 500 mm above the
ground surface. Figure 3-1b shows the tested unit of the car, which consists of
a plastic bumper, an insert made of expanded polyurethane, and a rear panel of
the car body.

The experiments carried out at the plant show that the structure in question
is imperfect: In the case of lateral impact the bumper is damaged and dents are
left on the car body. Therefore, it is necessary to try to improve the prototype
of the structure, to give recommendations that would provide damage protection
of the car body, and also to find the optimal solution.

In the problem of the car protection against a lateral impact, following factors
must be taken into account:

1. Large deformations and the possibility of loss of the structure’s stability.

2. Contact interaction of bodies with variable contact boundary in two pairs
of touching surfaces (the block head with the bumper and the bumper
with the car body, Fig. 3-1b).
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Figure 3-1 General view of the structure. (a) Finite element model; (b) the schematic

of contact interaction of bodies under the impact: (1) Block head; (2) bumper; (3) rear
panel; (4) insert. Dashed line shows the contact between the bumper and the rear panel.

3. The transition of loaded parts of the structure to the plastic state, the
generation of cracks, and the material fracture.

When calculating, we have considered the left-hand half of the rear bumper
and rear panel of the car (Fig. 3-1a). Figure 3-1a sketchily shows the contact
between the block head and the bumper. The other part of the car has been
modelled by beam elements. The structure is represented by the finite element
model consisting of 2,016 elements and 1,986 nodes.

One calculation of the performance criteria vector for the aforementioned finite
element model, provided the parameters values are fixed, requires more than 15
hours. Of course, with such a consumption of computer time, the optimization
of design variables is hardly implementable.

Figure 3-2 presents the results of solving the dynamic contact problem in
which the interaction forces and contact areas for block head - bumper and
deformed bumper - rear panel pairs are to be determined. Time histories of the
reaction force in the contact area between the block head and the bumper (curve
1), the reaction force in the contact area between the deformed bumper and the
rear. panel. (curve.2),.and.the system.energy (curve 3) are shown. Curve 3 takes
into account the energy dissipation.
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Figure 3-2 The histories of the reaction force in the area of contact between the block
head and the bumper (curve 1); the reaction force in the area of contact between the
bumper and the rear panel (curve 2); the energy of the system, with dissipation being
taken into account (curve 3).

One can see from Figure 3-2 that the total time of impact, during which
deformations increase, can be divided into two phases: before bumper comes
into contact with the rear panel (~2.7-10%s), and after contact. During the first
phase, only the bumper contacts with the block head, at this time the force of
interaction between the bumper and rear panel is equal to zero (curve 2). Here,
insignificant energy change occurs due to the weak strength of the plastic (low
elasticity modulus). By the beginning of the second phase, the bumper fails to
resist a load because of the damage. This fact is confirmed by some stabilization
of the reaction force acting on the bumper at this time (curve 1). The fracture
is taken into account in a nonlinear model of the bumper material. In the second
phase, the rear panel makes contact with the bumper, the energy dissipation
grows due to irreversible plastic deformations.

The investigations performed show the possibility of the decomposition of the
finite element model into two subsystems. One of the subsystems describe the
interaction of the block head with the bumper, while the other corresponds to
the interaction of the deformed bumper with the rear panel. The second subsystem
can be also defined as the subsystem describing the interaction of the block head
with the rear panel after the destruction of the bumper.

Thus, the behavior of the whole system during impact can be represented by
the first subsystem on the first phase, and by the second subsystem on the second
phase.
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Formulation and solution of the optimization problem.

Let us formulate performance criteria reflecting the requirements imposed on the
system as a whole:

1. The mass of the structure must be minimal
®,(a) > min;

2. Residual deformations of the car body after the impact must be minimal,
ie.

®,(a) = min, v=2,10.

Here, a is the vector of design variables of the bumper and the rear
panel of the body; and ®,(a) are residual deformations at certain moni-
tored points. These deformations are calculated on the basis of the full
model describing the whole system. We take the finite element grid
nodes to which the external load is reduced as the monitored points.

There are nine of these points. Thus, the total number of performance criteria
is 10.

Now, let us introduce the subsystem performance criteria and find out their
relation to the performance criteria of the whole system. At the subsystem level,
we specify performance criteria as follows. Criteria QJ}(a) and ®}(a) are related
to the bumper. bl being the mass of the bumper while ®l(a) characterizes
the potential energy of the bumper deformation; a is the vector of design variables
of the bumper. The increase of the bumper deformation energy leads to the
reduction of residual deformations of the rear panel.

Criteria ®%(v),...,P30(ex) are related to the rear panel: ®?(@) is the mass of
the rear panel and P a),...,PIo(@) are its residual deformations at the monitored
points, a is the design-variable vector.

It is obvious that ®;=®}+®?. Criterion ®} is to be maximized while the
others must be minimized.

We have analyzed the structure of the bumper prototype with 5 stiffening ribs
and carried out relevant calculations of the criteria for the bumper and the rear
panel. These calculations show that for the examined structure, it is impossible
to find a feasible solution in which residual displacements of the body do not
exceed the limiting admissible values:

X @)<1mm, v=2,10.

In this case, the structural optimization is necessary, that is the search for the
structure configuration that would allow the solution of the posed problem.
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Structural optimization of the bumper design variables based on the analysis
of the first subsystem

As the reaction force grows on the first phase (Curve 1 in Fig. 3-2), the absorption
of the block head kinetic energy by the bumper grows until the bumper starts
interacting with the rear panel. To determine the deformation energy of the
bumper we specify displacements of the nodal points at which the interaction
occurs. Internal forces generated by this interaction produce work over the dis-
placements. This work characterizes absorption properties of the bumper.

For strengthening the structure it is possible to either add stiffening ribs or
use materials with better stiffness characteristics.

Let us consider the case of using additional stiffening ribs without changing
the material. Three arrangements of the additional stiffening ribs, regarded by
experts as being most promising, have been considered. For each of the arrange-
ments, we have conducted the optimization of design variables. Later, the results
are presented that relate to the best of the three configurations. In this configura-
tion, the bumper contains 12 stiffening ribs, and the rear panel 6.

When optimizing design variables of the bumper, the thickness of the shell
of the bumper, o}, and the heights of twelve stiffening ribs, aé,...,ah, were
varied.

The feasible solutions set containing four solutions represented by vectors
126, 254, 257, and 494 i.e. &'®, @®*, @®’ and a** (see Table 3-1) was
obtained.

The investigation was carried out on the finite element model containing 727
nodes and 950 elements. Figure 3-3 shows 12 stiffening ribs of the feasible
structures of the bumper, as compared with five of the prototype. The ribs with
numbers from 6 to 12 have been added.

Structural optimization of design variables of the body rear panel based on
the analysis of the second subsystem. The search for consistent solutions

The second subsystem represents the structure part located in the zone of contact
interaction between the block head and rear panel. The kinetic energy of the
block head by the time it starts interacting with the rear panel is determined on

Table 3-1
(bl
o} (kg) @} (N'm)
N
126 3.03 34.9
254 3.03 34.0
257 3.04 36.1

494 2.97 339
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Figure 3-3 Finite element model of the optimal solution of the bumper.

the basis of the full model (block head, bumper, rear panel). Note here that
different feasible design-variable vectors of the bumper correspond to different
values of the initial kinetic energy. Therefore, for each of the design-variable
vectors of the bumper, one has to consider the special problem of rear panel
optimization. In doing this, we calculated the load on the rear panel for each of
the feasible design-variable vectors of the bumper.

After having determined feasible design-variable vectors of the bumper (Table
3-1), one must find design-variable vectors of the rear panel consistent with the
bumper design-variable vectors, taking into account the fact that the velocity of
the block head strike against the rear panel is determined for each design-variable
vector of the bumper. When optimizing the rear panel, for each of the four
design-variable vectors of the bumper, the search for consistent design-variable
vectors of the rear panel was conducted.

Besides the rear panel thickness (@), design variables of the stiffening ribs:
thicknesses, o3,...,a2, and heights of horizontal stiffening ribs, o, o3, ady, were
also varied. Depending on the heights of horizontal ribs, design variables of
vertical ribs are determined automatically.

In our example, the finite element model contained 305 nodes and 340 ele-
ments, see Fig. 3-4. For 257 design-variable vector of the bumper, six consistent
and feasible design-variable vectors of the rear panel have been found that satisfy
all the aforementioned criteria constraints on <I>,2,, v=2.10, see Table 3-2. It
turned..out. that_for_these design-variable vectors (just as for the prototype)
®3=2.72 kg. As has been mentioned, this structure of the rear panel contains
six stiffening ribs, three vertical and three horizontal. The ribs pass through
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Figure 3—-4 Finite element model of the optimal solution of the rear panel.

corresponding nodal points shown in Figure 3-4. The stiffening ribs are drawn
by thick lines in the figure. The prototype contains no ribs.

The values of residual deformations at the nodal points 2,...,10 are presented
in_corresponding columns of Table 3-2. These values (®3,...,®%) are presented
for six consistent solutions.

The search for consistent design-variable vectors of the rear panel has also
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Table 3-2
(DZ
©oe @ e @ % & & 9
N (mm) (mm) (mm) (mm)  (mm) (mm)  (mm) (mm)  (mm)

67 0.22 0.17 0.46 0.39 0.59 0.85 0.43 0.14 0.14
90 0.27 0.21 0.40 0.28 0.37 0.49 0.47 0.14 0.11
98 0.23 0.19 0.44 0.33 0.48 0.66 0.44 0.15 0.12
125 0.23 0.31 0.45 0.37 0.59 0.94 0.50 0.13 0.14
148 0.24 0.19 0.42 0.32 0.45 0.61 0.39 0.14 0.12
181 0.24 0.22 0.39 0.29 0.35 0.43 0.47 0.15 0.11

been conducted for the three design-variable vectors of the bumper, 126, 254,
and 494.

Aggregation of subsystems: Search for the optimal solution

In the aggregation procedure, design variables of each of the feasible design-
variable vectors of the bumper are united (concatenated) with design variables
of each of the corresponding consistent design-variable vectors of the rear panel.
For instance, to the design-variable vector of the bumper 257, design variables
of each of the six consistent design-variable vectors of rear panel have been
added. As a result, the vectors (a7, a®’), (@®, &), (a®7, &”®), (&**7, a!?),
@7, a'®), and (@®7, a'®") have been formed, and we have obtained six
design-variable vectors of the whole system. An analogous procedure has also
been performed with design-variable vectors of bumper 126, 254, and 494. As
a result, 15 design-variable vectors of the whole system have been generated.
The number of feasible solutions satisfying the criterion constraint on the total
mass of the structure was nine, six of the solutions were just given. For all the
feasible solutions, we have calculated criteria ®,, v= 1,10 related to the whole
system.

The installation of additional stiffening ribs leads to the reduction of residual
deformations, their values not exceeding 1 mm.

After all the investigations, we preferred the structure using design-variable
vector of bumper 257 and design-variable vector of rear panel 181. Characteristic
of this structure is more uniform distribution of residual deformations (as com-
pared with other versions) and an acceptable mass.

Conclusion

The proposed approach allows a designer to generate recommendations concern-
ing the choice of design variables of the bumper and rear panel of a car, and
also to reduce the time of operational development of the car structure. It should
be added that the mass production of cars is in question. Therefore, the effect
of the optimization is evident here.



4

Multicriteria Identification
of Mathematical Models and Problems
of Operational Development

Identification of parameters and structures of mathematical models is fairly
well reflected in the literature (see, e.g., Red’ko, et al. (1985); and Ljung (1987).
Multicriteria methods allow us to treat this important problem in a different way.
Multicriteria identification is a new direction that is of great value in applications.

4-1. Problems of Multicriteria Identification and Their Features

So many times we were impressed by the results of optimization: The first
criterion is improved twice as much, the second one, by 80%, etc. However,
such advances always cause doubts. How trustworthy are those figures? How
adequate is the mathematical model? Without having answered these questions,
it is hardly possible to assert that the optimization is of some practical sense.
To construct the model of a complex system so that all performance criteria
(there may be many dozens of them) were determined with acceptable accuracy
is unusual. As a rule, in practice some of the criteria are calculated with compara-
tively high accuracy, while others are determined with considerable errors.

This is the most typical situation when investigating complex mathematical
models. Therefore, it is very important to have complete information about the
mathematical model. In other words, we must be sure that our model is adequate
for the system under study. The adequacy can be established by using different
identification methods.

In the most common usage, the term identification means the construction of
the mathematical model of a system and determining the parameters of the
model by using the information about the system response to known external
disturbances. In a sense, identification problems are inverse with respect to
optimization problems.

By their nature, applied identification problems are multicriteria. However,

89
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as a rule, these problems have been treated as single-criterion problems (Red’ko
etal. 1985; Ljung 1987). Let us briefly dwell on the most widespread identification
methods and show the necessity of using multicriteria identification techniques.

When constructing a mathematical model, one first defines the class and
structure of the model operator, that is, the law according to which disturbances
(input variables) are transformed into the system response (output processes).
This is called the structural identification. For mechanical systems, the structural
identification means determining the type and number of equations constituting
the mathematical model of the system. Parametric identification is reduced to
finding numerical values of the equation coefficients, based on the realization
of the input and output processes. In doing this, frequency responses, transfer
functions, and unit step functions are often used (Graupe 1976). A number of
problems require preliminary experimental determination of basic characteristics
of a mechanical system (e.g., the frequencies, shapes, and decrements of natural
oscillations). The structural identification is necessary if there is no preliminary
information about the system structure or this information is not sufficient for
compiling equations. In the general case, the structural identification problem is
very difficult to solve. Apparently, this accounts for the absence of general
methods for solving this problem.

The construction of a good (adequate) mathematical model of a complex
system is a rare and great success for a researcher. Mostly, one has to represent
the examined system as a set of mathematical models. For example, the planar
rigid-body model of a truck (considered in Section 4-5) describes fairly well the
behavior of the truck at low frequencies, whereas for high frequencies we have
to use a three-dimensional nonlinear model.

Parametric identification (provided the structure of the mathematical model is

known) is usually reduced to the minimization of a functional'l

I=Ile()],

where a=(ay,...,0,) is a vector of variables (parameters) to be estimated; and
€(e) is a generalized error or the difference between the measured output pro-
cesses of the system and respective responses of the mathematical model.

Let the system be linear and governed by

Mg(n)+Bg(r)+Cg()=x(2),

where M, B, and C are nXn-matrices of inertia, damping, and stiffness coeffi-
cients, respectively; g(f) and x(?) are the vectors of generalized coordinates and
disturbances. For this system, the generalized error is expressed by

Y Forminimization of the functional 7} single*ctiterion methods are mostly used, including gradient
methods, stochastic search algorithms, and their numerous modifications (Bekey 1970).



Multicriteria Identification of Mathematical Models | 91

€(t,0)=Mg(H)+ Bg(1)+ C§ (1) —%(),

where (") means the presence of errors in experimental data.

The most important stage of solving the identification problem is the choice
of the criterion of agreement between the mathematical model and the real system,
that is, the functional /. In publications, one can find several types of this criterion
(Red’ko et al. 1985; Tsypkin 1982), the most frequently used being:

¢ The minimum of the mean square of the generalized error or difference
between the responses of the model and system,

* The minimum of the weighted mean square of € (Markov’s estimate),
¢ The maximal likelihood,
* The minimum of the average risk.

When determining the desired variables from the minimality of the generalized
error mean square, the functional / has the form

T
I(a)=71,£ €'(¢, a)e(t, o) dt

and, as a rule, is quadratic with respect to a (here, the prime denotes the
transposition operation). Therefore, the determination of the extremum of the
functional I is reduced to solving the following system of algebraic equations

TFa=d

This system is obtained by equating to zero partial derivatives of I(o) with
respect to the components of the vector «, that is, dl(a)/da;=0, j=1_,r. Here,
I' is an r Xr-matrix, and d is the right-hand side vector. Very often, the solution
of these problems reduces to the investigation of nonsingularity conditions for
the matrix I'. For more complete information about other criteria, one can see,
for example, (Tsypkin 1982).

Experimental data are known to be always determined with some errors. The
nature of these errors determines the choice of a criterion (i.e., the functional
I) for establishing the correspondence between the mathematical model and the
real system. Therefore, it is very important to study the nature of the measurement
errors, to analyze their influence on the results of identification, and to elaborate
recommendations for obtaining the solution with prescribed accuracy.

In theory, identification methods for mathematical models of linear systems
are the most developed. Red’ko et al. (1985) describe the identification methods
using special signals (steplike, impulse, sinusoidal, etc.) applied to the system.
These.methods.can serve for.identification of steady-state processes with a single
input or many inputs, provided only one of them is engaged at a time.
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The aforementioned methods are based on the Fourier transformation. Note
that the frequency method of identification of linear systems is based on works
by Nyquist (1932) and Bode (1945) and uses amplitude-frequency characteristics
(i.e. the dependence of amplitudes of the system oscillations upon the disturbance
frequency). The frequency method implies that a sinusoidal signal whose fre-
quency changes within a prescribed range is applied to the system input. This
method uses the Laplace transformation for input-to-output ratio.

Some methods for the identification of mathematical models of linear systems
are presented, for example, in Bode (1945); and Strobel (1968). According to
these methods, the functional evaluating the discrepancy between the experimen-
tal and computed transfer functions is given by

1 X 2
I=1V 2 Q((DJ)

Jj=1

€(in)

Here, €(iw;) is the generalized error, due to errors in determining the input data
and the discrepancy between the structures of the system and its model;
i= \/—_1 ;N is the number of the exciting force frequency values at which the
experimental measurements be carried out; {}(w;)>0 is the weighting function
allowing for relative significance of the input data.

The apparent simplicity of formulas similar to those given here hides a compli-
cated problem of determining the weighting coefficients. The weighting functions
(coefficients) are used here in order to avoid the multicriteria consideration. We
have already mentioned in Chapter 1 that such an approach is not effective. In
some cases, more complex criteria are used as well. Note that the approach in
question allows us not only to identify the variables of a linear system but also
to determine its number of degrees of freedom (Red’ko et al. 1971; Woodside
1971).

One of the basic drawbacks of many identification methods for linear systems
is the fact that these methods reduce to solving high-order systems of linear
algebraic equations. The matrices of coefficients in such systems may appear to be
ill-conditioned, and that leads to unstable solutions. The solution errors increase to
unacceptable amounts, as the system order increases. In a number of cases, the
way out consists in the application of so-called modal methods that do not require
the solution of high-order systems with ill-conditioned matrices (Tsypkin 1982).

The identification techniques have also been developed for some classes of
nonlinear systems such as chain systems, (Sprague and Kohr 1969; Tumanov et
al. 1981). However, the general issues of identification of nonlinear systems
have been studied poorly. One of the essential reasons for this lies in the impossi-
bility (or great complexity) of constructing the functional / evaluating the ade-
quacy of the model to a real system.

Thus, we can draw the following conclusion. The available identification
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methods are reliable enough in cases where the model structure is established
exactly and one can construct the functional I. This is mostly related to linear
systems (however, these systems are also associated with certain complications
we have already mentioned). In case it is impossible to establish the model
structure exactly or to construct the functional /, the identification methods are
mostly ineffective, that takes place for the majority of nonlinear systems.

In this connection, a new approach is proposed in Genkin et al. (1987). In
all basic units of the structure under study, we experimentally measure the values
of characteristic quantities being of our interest (e.g., displacements, velocities,
accelerations, etc.). Parallel with this, we calculate the corresponding quantities
by using the mathematical model. As a result, particular adequacy (proximity)
criteria are formed as functions of the difference between the experimental and
computational data. Thus we arrive at a multicriteria problem. Its solution allows
us to avoid the difficulties mentioned before. The multicriteria consideration
makes it possible to extend essentially the application area of the identification
theory.

Let us discuss some basic features of multicriteria (or vector) identification
problems.

1. In the majority of conventional problems, the system is tacitly assumed
to be in full agreement with its mathematical model. However, for
complex engineering systems (e.g., machines), generally, we cannot
assert a sufficient correspondence between the model and the object.
This does not permit us to use a single criterion to evaluate the adequacy.
In multicriteria identification problems, there is no necessity in artificially
introducing a single criterion to the detriment of the physical essence of
the problem.

2. Unlike conventional identification approaches, the adequacy of the math-
ematical model is evaluated by using a number of particular criteria of
proximity, as already mentioned. For example, when identifying the
parameters of the dynamic model of an automobile, it is necessary to
take into account such important indexes (particular criteria) as vibration
accelerations at all characteristic points of the driver’s seat, driver’s cab,
frame, and engine; vertical dynamical reactions at contact areas between
the wheels and the road; relative (with respect to the frame) displacements
of the cab supports, springs, engine, etc (Perminov and Statnikov 1987).
Such a multicriteria approach is very important for determining to what
extent the mathematical model corresponds to the physical system. For
complex systems, the number of particular proximity criteria used for
the evaluation of the mathematical model adequacy can achieve many
dozens (see Section 4-5).

3. Very. often, when_solving_the problems of the class in question, the
designer has no information about the limits o and of* (see (1-1)) for
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many of the variables to be identified. The improper specification of
these limits can lead to a huge number of calculations, and nevertheless,
the results of the identification will be unsatisfactory or incomplete.

Fig. 4-1 shows the initial parallelepiped II' where the search for the
variables to be identified has been started. Then the search continues in
the parallelepiped I1? constructed after the correction of the boundaries
of I1'. The process goes on in a similar way, until the parallelepiped
IT* is found containing the set of feasible solutions Dy (Do C I1%). If for
some parallelepiped II, the relation ¥ ¢ II is valid, then D, ¢ II.
Note that the parallelepipeds IT', IT%,... can contain some feasible vectors
o € D,,. To find IT¥ it is necessary to use the recommendations given
in Sections 1-3 and 1-4.

4. In structural identification, when investigating different mathematical
models of the system, the number and limits of the variables to be
identified, as well as the number of proximity criteria, can essentially
change. In this connection, the problem arises on how to make the
identification results for different structure agree.

4-2. Parameter Space Investigation Method in Problems of
Multicriteria Identification

Denote by ®%(a), v=1,k, the indexes (criteria) resulting from the analysis of
the mathematical model that describes a physical system, a=(a;,...,q,) being
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Figure4—1.-The search for.domains-of variables in multicriteria identification problems.
Determination of the feasible solutions set for operational development.
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the vector of parameters of the model. The criteria ®j(a) can be functionals of
integral curves of differential equations or functions of « that are not associated
with solutions of differential equations.

Let 57 be the experimental value of the vth criterion measured directly on
the prototype. (The experiment is assumed to be sufficiently accurate and com-
plete. By completeness we mean that criteria ®7% are measured in all basic
units, at most characteristic points of the structure. The amount of measurement
data must be sufficient for correct formulation of the identification problem).

Suppose there exists a mathematical model or a hierarchical set of models
describing the system behavior. Let ®=(||®{—®5?||, . . ., || Di—DF?|)),
where ||-|| is a particular adequacy (closeness, proximity) criterion. This crite-
rion, as has already been mentioned, is a function of the difference (error)
D PP, Very often it is given by (P—DEP)? or |BS—DEP|. In the cases
where the experimental values @57, v=1,k, are measured with considerable
error, they can be regarded as a random quantity. If this random quantity is
normally distributed, the corresponding adequacy criterion is expressed by
M{|| ®5—®5? || },where M{||-||} denotes the mathematical expectation of the
random quantity ||-||, see (Red’ko et al. 1985; Raybman 1970). In cases of
other distribution functions, more complicated methods of estimation are used,
for example, the maximal likelihood method.

We formulate the following problem: by comparing the experimental and
calculation data, determine to what extent the model corresponds to the physical
system and find the parameters of the model. In other words, it is necessary to
find variable vectors o satisfying conditions (1-1) and (1-2) and, besides, the
inequalities

D5 — PP <DE*. 4-1)

Conditions (1-1), (1-2), and (4-1) define the feasible solutions set D, (Genkin
et al. 1987). Here, ®%* are criteria constraints that are determined in the dialogue
between the researcher and a computer. To a considerable extent, these constraints
depend on the accuracy of the experiment and the physical sense of the criteria
D,.

The Search for the ldentified Solutions

The formulation and solution of the identification problem are based on the
parameter space investigation method. In accordance with the algorithm given
in Section 1-3, we specify the values ®** and find vectors meeting conditions
(1-1), (1-2), and (4-1). The vectors o' belonging to the feasible solutions set D
will be called adequate vectors.

The_restoration. of parameters_of a_concrete model on the basis of (1-1),
(1-2), and (4-1) is the main purpose and essence of multicriteria parametric



96 / Multicriteria Optimization and Engineering

identification. Having performed this procedure for all structure (mathematical

models), we carry out multicriteria structural identification as well.
The vectors oy that belong to the set of adequate vectors and have been
chosen, by using a special decision-making rule, will be called identified vectors.
The role of the decision-making rule is often played by nonformal analysis of
the set of adequate vectors. If this analysis separates several equally acceptable

vectors o'y, the solution of the identification problem is nonunique.
The identified vectors a4 form the identification domain Did=Ua§d. Some-

1

times by carrying out additional physical experiments, revising constraints ®%*,
etc. one can reduce the domain D;, and even achieve that this domain contains only
one vector. Unfortunately, this is far from being usual. Nonunique restoration of
variables is a recompense for the discrepancy between the physical object and
its mathematical model, incompleteness of physical experiments, etc.

If a mathematical model is sufficiently good (i.e. it rightly describes the
behavior of the physical system), then multicriteria parametric identification leads
to nonempty set D,. The most important factors that can lead to empty D, are
the imperfection of the mathematical model and lack of information about the
domain in which the desired solutions should be searched for.

The search for the set Dy, is very important, even in case the results are not
promising. It enables the researcher to judge the mathematical model objectively
(not only intuitively), to analyze its advantages and drawbacks on the basis of
all proximity criteria, and to correct the problem formulation.

Thus, multicriteria identification includes the determination and nonformal
analysis of the feasible solutions set D, regarding all basic proximity criteria,
as well as finding identified solutions oy belonging to this set.

Often multicriteria identification is the only way to evaluate the quality of the
mathematical model and, hence, to optimize this model.

This algorithm is successfully used in practice. In Sections 4-3 and 4-5, we
discuss some important problems solved by using this algorithm.

By analogy to the optimization problem, we can formulate and solve the
problem of constructing the adequate solutions set with prescribed accuracy.

The Search for Identified Solutions with a Prescribed Accuracy

Let €, (v=1,k) characterize the desired accuracy of the correspondence between
the physical system and its mathematical model with respect to the criterion
@S (i.e., the inequality || DS—PE?|| < €, must hold). Then the values of all
criteria restoring the experimental characteristics with a prescribed accuracy can
be found through the approximation of the adequacy criteria range.

In multicriteria identification, we are interested not only in values of adequacy
criteria, but also in values of variables. For example, let a and 8 be vectors
giving “good” values to adequacy criteria, ®(a)~®(B) while the vectors o and
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B being considerably different. In this case, if there is no additional information
for making the choice between the vectors a and B, we can regard ®(a) and
®(B) as being equally adequate to the physical experiment. However, the re-
searcher must keep in mind all vectors corresponding to good values of adequacy
criteria. This is explained by the following considerations. In practice it is usually
impossible to formalize all requirements imposed on the physical or engineering
system. If we take into account only one of two vectors corresponding to
approximately the same values of adequacy criteria, we can possibly lose the
better vector with respect to nonformalized criteria. Suppose we have succeeded
in meeting all demands of the system. In this case, we should consider all
the aforementioned vectors when working with the mathematical model after
having completed the identification. Suppose we are to optimize the parameters
of the model with respect to some criteria. If we have eliminated one of
two equally adequate vectors, the dropped vector can turn out to be preferred
with regard to the performance criteria. Taking into account these considera-
tions, we can modify the definition of the solution of the multicriteria
identification problem.

Denote by V(®(P)) an e-neighborhood of the Pareto optimal set ®(P) in the
space of adequacy criteria. It is reasonable to define the solution of the multicrite-
ria identification problem as a set W of all variable vectors a belonging to the
feasible solutions set D and satisfying the inclusion ®(a)EV(D(P)).

As a result of nonformal analysis of the set W, the researcher can choose the
most preferred models.

Let us show how one can solve the problem by using the parameter space
investigation method.

The solution algorithm is based not only on the approximation of the criteria
space, but also on the approximation of the variable space. Let @y (a)=a; and
di+; be the admissible error for the variable o, where k is the number of adequacy
criteria. By using the algorithm of Chapter 2, let us construct the approximation
of the set D, to the accuracy 8={dx.}, j=1,r, and the approximation of its

image, ®(Dg), to the accuracy €={e,}, v=1,k. The fact that we have declared
the variables o; as criteria ®;4;, enables us to approximate ®(Dg) and D
simultaneously. In this case, the set V(®(P)) can be approximated to the accuracy
€, and any vector of D, can be determined to the accuracy 8. Using the approxima-
tions of D, and ®(D,) we can find the set W, and thus obtain the solution of
the multicriteria identification problem.

Let us call the set W, the set of e-adequate vectors. The vectors a4 that belong
to the set of e-adequate vectors and are determined with the help of a decision-
making rule will be called identified vectors. The set D;; of all identified vectors
is called the identification set.

Thus, the described method makes it possible to find solutions of the multicrite-
ria identification problem with any prescribed accuracy. Also, this method is
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universal and can be applied to linear and nonlinear systems, both with distributed
and lumped parameters. However, the computer implementation of this algorithm
can be time-consuming.

Let us draw some conclusions. The formulation and solution of the multicriteria
identification problem combined with nonformal analysis of the obtained results
make it possible to:

1. Determine the sets of adequate and identified solutions and thus judge
about the agreement between the physical system and its mathematical
model

2. Assess relative merits of models (in case there is a hierarchical set of
models), decide about the expedience of complication of the model, and
establish the accuracy, completeness, and reliability of the obtained
results.

3. Correctly specify the limits of the variables range and justify the list of
performance criteria (performance indexes) for subsequent multicriteria
optimization having established the adequacy of the mathematical object
to the physical system (e.g., in the course of operational development
of a machine).

4-3. Example 1: Multicriteria Identification of the Parameters of a Slotter

The methodology of multicriteria identification will be considered in the example
of a slotter whose thrust is 30 kN. Slotters are widely used for machining irregular-
shaped internal surfaces. Figure 4-2 shows a slotter consisting of column I and
bed II joined by the bolted joint A. Slotting ram III is mounted on the column.
It holds a slotting cutter and reciprocates in the vertical plane. On the bed, table
IV is mounted and a workpiece is clamped on it. Machining is implemented by
reciprocating the slotting cutter with respect to the workpiece.

Unfortunately, slotters are prone to intense vibration within the most important
range of cutting speeds from 6 m/min to 12 m/min. The vibrations during the
cutting process limit the productivity of the machine, reduce its reliability, shorten
the service life, and deteriorate both the accuracy and the quality of the processed
surfaces.

Experimental Study of Vibration Stability of the
Slotter’s Hydromechanical Systems

The system’s response to dynamic disturbances was measured by transducers
mounted at eight points located on different levels over the bed guideways
(Fig..4-2). This allowed for measuring vibration amplitudes as functions of the
disturbing-force frequency.
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Figure 4-2 The layout of transducers on the machine tool. The “opening” of joint A.

The study of the dynamic stiffness of the mechanical system and the modes
of vibration of the machine tool has shown that the stiffness of the joint between
the column and the bed was insufficient. Excited by a periodic disturbing force,
the column starts vibrating, and the amplitudes of vibration of individual points
vary linearly depending on their vertical position. The experiments have shown
that the maximum-amplitude resonance vibration takes place at the natural fre-
quency 15.9 Hz and causes “opening” of the joint, upon which the column and
the bed start displacing with respect to each other (Fig. 4-2).

Construction of a Dynamic Model of the Machine Tool
The analysis of experimental results shows that the most reliable data have been

obtained for the horizontal-torsional and vertical modes of vibration. The former
is more intense: it causes “opening” of the joint A between the column and the
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bed, large amplitudes of the slotting tool vibration with respect to a workpiece,
and deterioration of the surface finish.

Since the two basic modes of vibration correspond to the frontal plane of the
machine tool (which passes through the symmetry axes of the column and the
bed), it was decided to solve the problem of identification using the plane model
shown in Figure 4-3. The model comprises a column and a bed, a table, a ram,
a slotting tool, joints between the table and the bed and between the machine’s
supports and the foundation, the joint between the column and the bed, the joint
between the ram and the column guideways, fastening units of the hydraulic
cylinder, and ram slide.

Parameters of the dynamic model include the masses and the moments of
inertia, the coordinates of fastening units of vibroisolating and elastoinertial
elements, the angles of rotation of local coordinate systems, stiffness characteris-
tics, the damping factors of structural elements, and mechanical characteristics
of elastoinertial elements.

Yl TITIII I

Figure 4-3 Dynamic model of the machine tool.
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The Horizontal, Vertical, and Torsional Stiffnesses of the Column and
the Bed Supports on the Foundation (Links 1-8 and 6-7 in Fig. 4-3).

During the slotter operation the concrete foundation is subjected to periodic
loads and is gradually destroyed. The support stiffnesses are responsible, to a
considerable extent, for the main drawback of the machine tool, the “opening”
of the joint between the column and bed. Since the stiffness coefficients of the
supports may hardly be accurately determined experimentally or specified a priori
by some alternative means, they were included in the list of the model parameters
to be identified.

The Horizontal, Vertical, and Torsional Stiffnesses of the Joint Between
the Column and the Bed (Link 1-6 in Fig. 4-3).

The column and the bed of the machine tool under consideration are connected
with bolts distributed over the surface of the joint. Since the ram mass and its
distance from the joint are large, slotting is accompanied by the appearance of
a large bending moment that loosens the bolted joints in a nonuniform manner.
Due to this, it is rather difficult to measure the joint stiffnesses precisely.

It was decided to identify the following nine variables determining the modes
of the machine tool vibration: a=(c}®, ¢} ,px , c; 6 16, } 6 cg 787, x )
where ¢, c;, and p, are the horizontal, vertical, and torsional stiffnesses respec-
tively, and 1-8, 6-7, and 1-6 are the superscripts of the links.

Adequacy criteria

The mathematical model of the machine tool is used for the determination of
the set of criteria characterizing the most vibroactive modes of oscillations in
the low-frequency range, because the full-scale test data are sufficiently complete
for this range only. Therefore, the adequacy criteria characterize the degree of
correspondence of the model to the real object mainly within the given range.
Table 4-1 presents experimental characteristics @77 defining the list of the
adequacy criteria. The latter were calculated using the formula

PP —Pe _
v *1-100%, v=1,8.

®,= -E'sx—p—

Functional constraints

In solving the problem of identification of the dynamic model parameters, a
list of eight constraints taking into account the accuracy of manufacture and
assemblage of the machine tool units as well as the accuracy of mounting the
machine tool on the supports, has been generated.

Thus, a full-scale experiment has been conducted, and the mathematical model,
proximity:criteria;-and-functional-and.variable constraints were generated. Solu-
tion of the identification problem, and subsequently, the optimization problem,
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Table 4-1
Experimental
(i1 Physical meaning value
PP Basic frequency of natural oscillations, Hz 16
o5F The second natural frequency, Hz 30
o5 Coefficient of the oscillation shape in node 3, relative units 0.738
(e Coefficient of the oscillation shape in node 5, relative units 0.934
[ Coefficient of the oscillation shape in node 6, relative units 0.283
o Vibratory compliance value in the cutting zone at the first 3.2-107*
resonance frequency, mm/N
PP Static displacement value in node 3, mm, under cutting force 0.492-1072
of 1 kN
ogF Static displacements in the cutting zone, mm, under cutting 0.288-1072
force of 1 kN

was aimed at improving the basic characteristics of the machine tool, namely
its reliability, service life, machining accuracy, and vibration stability.

Solution of the problem of multicriteria identification

In the initial parallelepiped IT!, N=2,048 trials were conducted, and it was found
that Do =(J. A similar result has been obtained by analyzing new parallelepipeds
I1? and IT? obtained by correcting the IT! boundaries (see Fig. 4-1).

Upon analyzing the test tables and histograms of corrected variables it was
decided to change the variation boundaries again, changing at the same time the
number of variables. This led to parallelepiped II%. Variables ;93 described
later, have a substantial effect on the character of vibration in the low-frequency
range; these variables cannot be accurately measured in an experiment. Here aq
is the stiffness of the screw of the table feed drive (modeled by the horizontal
stiffness of the joint between the table and the bed, link 1-2); a;; is the torsional
stiffness of the ram guideways on the column (link 3-4); and a;; and a;3 are
the corrections for taking into account shear deformations in the column (link
5-6).

These variables permitted taking into account the possible effect of the column
vibrational compliance on the nature of vibroactive modes of oscillations.

Thus, the subsequent search was carried out within a 13-dimensional variable
space.

Let us analyze the results obtained in parallelepiped IT*. The calculations
yielded acceptable values of discrepancies in all the static and dynamic criteria,
except-for. P The latter-criterionsis;the-only one depending on both dissipation
and stiffness parameters of the model. All the criteria pertaining to free vibration
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of the machine tool mechanical system and its static rigidity, are fully defined
by its stiffness and inertia variables. Therefore, large initial discrepancies in
criterion ®¢ against the background of satisfactory results for the majority of
the rest criteria, invited doubt in the correctness of the damping coefficients
specification.

In line with what was said before we have analyzed and corrected the damping
coefficients of the table and the ram guideways, the column and bed supports,
and elastoinertial elements of the fixed joint between the column and the bed.

Correctness of this decision was confirmed by obtaining satisfactory values
of discrepancies in criterion @ in subsequent calculations in parallelepiped IT°.

From the viewpoint of further correction of the parallelepiped IT* boundaries,
of special importance is analysis of the correlation matrix constructed using the
results of trials implemented in IT*. The analysis of the coefficients of pair
correlation between criteria and variables has revealed a strong influence of the
stiffness of the joint between the column and the bed on criteria ®4 and ®-.
This was conclusively confirmed by the results of a full-scale experiment that
has shown that the low vibration stability of the machine tool under consideration
is caused by the “opening” of the joint between the column and the bed. Also
analyzed were the dependences of closeness criteria on variables (see Chapter
5). A strong dependence of the criterion of vibration compliance within the
cutting zone on the stiffness of the joint has been demonstrated. Also, the
experimental study has shown that the total vibration displacements of the tool
and the workpiece are mostly determined by the column vibration. The effect
of horizontal stiffness of the bed support on displacements at node 6 is obviously
caused by the specific features of the machine tool design.

Thus, this analysis has allowed determination of the boundaries of the new
parallelepiped IT°.

Search in Parallelepiped II°: Analysis of the Results

Upon introducing the improved values of the damping factors, the discrepancies
in the vibration displacement amplitude in the cutting zone, criterion ®g, proved
to make up to 8%. The character of the modes of vibration remained the same.
In order to construct the feasible solutions set of adequate models, eight designer-
computer dialogues were conducted. The interactive mode was used for determin-
ing the feasible solutions set of models o' depending on the values of criteria
constraints ®** p=1,...,8. Next, the set was subjected to nonformal analysis.

Models & and o>®> should be considered the best ones, because (see Table
4-2):

1. The discrepancies in the frequency criteria are quite acceptable.

2. The discrepancies.in.criterion.®Pg-correspond to the accuracy of the
experiment (taking into account displacements of a statically loaded
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Table 4-2

Adequacy criteria values, %

Models cbl ¢2 (D:; ¢4 q)s ¢6 q)7 q)g
o 3.9 18.6 4.19 8.2 35.6 4.95 6.72 2.08
o’ 2.56 16.5 5.1 8.32 31.7 5.72 5.8 0.48
o'® 3.51 14.1 4.35 8.16 36.1 4.54 5.38 1.61

cutter and a workpiece in the cutting zone, which were measured in the
experiment with the greatest accuracy).

3. The discrepancies in the criteria ®3;, ®¢, and ®; are approximately
equal (especially so for model a®), since the three criteria characterize
vibration in the cutting zone.

The variables of a set of adequate models have been analyzed, and it was
found out that for the best solutions the tendency to large values of horizontal
stiffness of the table-bed joint persists.

These studies have allowed formation of parallelepiped IT® within which five
adequate vectors were determined. Model &'’ characterized by comparatively
small discrepancies in the basic closeness criteria, proved to be most preferred
(see Table 4-2).

This model was preferred for the following reasons:

1. The variables of the model take into account the low torsional stiffness of
the column, characteristic of the present machine tool design, correctly.

2. The model correctly takes into account the high compliance of the longitu-
dinal feed drive and the contacting surfaces of the table (the compliance
leads to large vibrational displacements in the cutting zone).

3. All the closeness criteria, taking into account the oscillatory nature of
slotting, are characterized by the values of @3, ®g, and ® being approxi-
mately equal (see Table 4-2). This means that alongside with a good
agreement of the criteria subjected to analysis, the general character of
vibration in the zone is also reproduced correctly.

Stability of this solution with respect to the variable changes was analyzed in
the vicinity of model &'®°. The analysis has shown that the model is stable. (A
parallelepiped centered at &'3% was constructed in accordance with the variables
tolerances, and N=256 trials were conducted. This is quite sufficient for the
parallelepiped of such a small volume. All the models proved to be feasible,
and the values of the criteria changed insignificantly.)

In order to,determine the,demain,of;admissible variations of design variables
(see Section 4-4), the variables of adequate models were analyzed in parallelepi-
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peds I3 and II°, and a parallelepiped for solving the problem of optimization
was constructed on D.
Let us draw some conclusions.

1. The problem of multicriteria identification of the parameters (variables)
of a slotter whose thrust is 30 kN was formulated and solved using eight
adequacy criteria that take into account the oscillation frequencies and
shapes, vibrational displacement in the cutting zone, and static character-
istics.

In solving the problem, 13 stiffness variables of the machine tool’s
joints and connections were identified.

2. The boundaries of the variables were found. Although prior to solving
the problem the boundaries were rather indefinite, the five-fold correction
has allowed finding such values of the boundaries, which ensure solution
of the problem of multicriteria identification.

3. The set of adequate models was found.

4. Taking into account all the adequacy criteria, model a'®> was identified,
characterized by low stiffness of the joint between the column and the
bed (this determines the loss of vibration stability of the machine tool
in the low-frequency range), and by the predominant effect of the column
vibration on the vibrational displacements of the tool with respect to the
workpiece.

In designers’ opinions, this model adequately describes the character
of vibration in the cutting zone and agrees well with experimental results.

5. The solution of the problem of multicriteria identification has allowed
objective estimation of the mathematical model of the slotter. In turn,
this permitted correct formulation and solution of the problem of improv-
ing the machine tool operation as concerns the criteria associated with
stability, machining accuracy, the hydraulic drive, ram, and slotting tool
service lives, the consumption of metal, and reduced costs. The ways
of improving the machine tool design are indicated.

4-4. Operational Development of Prototypes

In this section, we will discuss the problems of perfecting engineering systems
(machines). Mainly, these problems are related to the operational development
of a prototype of a machine designed for serial and mass production. First, the
machine is tested. the structure of the test is determined by the type of machine
(an airplane, car, ship, machine tool, etc.). For example, cars are subjected to
laboratory. (bench). tests, including strength, fatigue, and vibration investigations
of both individual units and the car as a whole.
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Great attention is paid to road tests. These are mostly carried out on proving
grounds where the car is tested on properly profiled road sections, in different condi-
tions depending on the carried load and velocity of the car. Apart from this, cars
are tested on regular roads under conditions close to operational ones. Thus, cars
are subjected to bench and road tests. These tests are aimed at the detection of
imperfections with subsequent operational development of the prototype so as to
satisfy the customer’s demands. The operational development is aimed atincreasing
the durability and reliability, reducing vibrations and noise, etc.

It is of essential importance to make the process of operational development
as short as possible. Perhaps this is the main problem faced by designers of cars
and other machines. As a rule, the decision about termination of the operational
development is made after a number of successive improvements of the prototype.

We propose a new technique for the operational development of mechanical
structures. The technique is shown in Figure 4-4. The operational development
starts with testing the prototype. Then two options are available. In the first
approach, based on the results of the tests only, we improve the prototype, and
then repeat the tests. If a series of successive improvements of the prototype gives
acceptable results, the decision is made to terminate the operational development.
However, if the designer considers the results of the procedure insufficient, the
second approach is advisable.

This approach envisages the construction of a mathematical model of the
system on the basis of the tests conducted. The subsequent investigation is carried
out in two stages. In the first stage, we perform the multicriteria identification
of parameters of the mathematical model. If, after the identification has been

—— e — e ——
Approach 2
Approach 1
Starting
the
Correction Multicriteria Analysis of operational
of the optimization results, com- Updating development
mathematical == (PSI method) |-»-parison withi—|% the
medel a prototype prototype
Test of the
prototype
Generation of
Analysis of recommendations
results of |—|—|»{for the optimal
testing design
Continuation of
Multicriteria investigations
identification
of parameters Development of
of the model the mathematical
(PSI method) model

Figure 4—4 The block diagram of operational development of engineering systems.
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completed, a significant disagreement takes place between the results of tests
and computations, one should correct the mathematical model and repeat the
identification procedure. This continues until the discrepancies between the exper-
imental and computational data are within tolerable limits.

In the second stage, after the multicriteria identification, the designer formu-
lates and solves the multicriteria optimization problem. In doing this, he uses
the mathematical model whose adequacy was established in the first stage. Based
on the results of the optimization, the improvement of the prototype is done,
and then the tests are reproduced. This cycle is repeated until the designer decides
about the termination of the operational development.

Thus, in the first stage, the set D, is found as a result of the multicriteria
identification. In the second stage, the optimization problem is solved: we con-
struct the parallelepiped II in D, determine the vector of performance criteria,
and find the feasible solutions set D (see Fig. 4-1).

We already mentioned that a weak point of optimization when used in design
is a significant discrepancy between the mathematical model and the physical
system, as well as improperly specified constraints. Therefore, very often the
results of optimization were of no practical value. In our approach, we obtain
a confirmed model and the set D, resulting from the multicriteria identification.
This, to a sufficient extent, justifies the optimization performed at the second
stage, and substantiates the recommendations for improving the prototype of a
machine. In addition, this approach is expected to significantly reduce the amount
of expensive and durable tests in the course of operational development of
machines.

Note that having the approximation of the set D, we can construct the set D
with required accuracy. First, we construct the domain of admissible variations
of design variables, D,=U II;. Here, the parallelepiped II; must satisfy the

1

following conditions: (1) The inclusions B € II; implies 3 € D, for any vector
B; and (2) II; is the maximal parallelepiped satisfying condition 1. In other
words, there is no parallelepiped in D, that contains II;.

The boundaries of parallelepipeds 11, can be constructed when having analyzed
test tables compiled by using the results of approximation of the set D,.

Let us make some comments as to the necessity of determining D,,. In the set
D, we are to determine the sets where it is possible to vary the design variables
continuously when searching for the optimal solution. It seems to be inexpedient
to search for the optimal solution over all the parallelepiped II in the case of
the rigid constraints, since the volume of the set D, can be considerably less
than the volume of II. Therefore, when searching over the set D, we increase
the percentage of found feasible models, as compared with the search over the
entire [1. Obviously, the probability of obtaining better results also increases in
this case.

After having obtained D,, we construct the feasible solutions set D(DCD,)
as described in Section 1-3.
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The optimization in II can fail to give desired results, for instance, if the
volume of II is comparatively small. In this case, the designer, having analyzed
the results of identification and determined significant design variables (see Sec-
tions 1-3 and 1-4, and Chapter 5), and also using his experience, can find it
possible and advisable to vary some of the design variables within essentially
wider ranges.

Then a new parallelepiped is to be constructed in which the optimal solution
o, with respect to criteria ®,,..., &, is searched for according to the method of
parameter space investigation. Usually, after having manufactured the optimal pro-
totype, itis advisable toinvestigate it and confirm that the design variables have been

found correctly, and the mathematical model is adequate to the physical system.
4-5. Example 2: Operational Development of a Vehicle

The problem of operational development of a prototype was formulated and
solved on the example of a truck.

The solution was obtained in two stages. In the first stage, the mathematical
model of the truck was identified on the basis of experimental data obtained in
road tests (the problem of multicriteria identification).

In the second stage, the results of solving the problem were used for developing
the optimal recommendations for improving the vibroprotective properties of the
suspension system (the problem of multicriteria optimization).

Mathematical Model of a Truck

Vibrations of a truck were studied and calculated by analyzing its simplified
scheme.

Both the analysis of experimental data and numerical studies of the truck
vibration have shown that for the case under consideration it suffices to consider
vertical and longitudinal-angular vibrations over the frequency range from 0.5
Hz to 16 Hz, using the model shown in Figure 4-5. The latter is composed of
concentrated masses connected by inertialess elastic and damping elements, and
has been developed subject to the following assumptions (Khachaturov 1976):

1. The platform, engine, frame, and cab are absolutely rigid bodies.

2. The moments of inertia of axles with respect to the wheel rotation axes
are zero.

The inertia forces due to unbalanced rotating masses are equal to zero.
The vibrations of the truck masses are small.
Each tire contacts the road at a point.

AN

The center of mass of the platform stays in the longitudinal symmetry
plane and moves in such a way that the projection of its velocity onto
the horizontal plane remains constant.

7. Both the elastic and damping elements have linear characteristics.
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Figure 4-5 Automobile schematic. 1 is the engine; 2 the cab; 3 the platform; 4 the
frame; 5 and 6 the axles; (1) and (2) the front and rear engine supports; (3) and (4) the
front and rear cab supports; (5) and (6) the front and rear platform supports; (7) and (8)
the front and rear suspensions; and (9) and (10) the front and rear tires.

The external excitation of the system is defined by functions g,(¢) and ¢»(¢),
which take into account the road microprofile under the front and rear axles,
respectively, and whose spectral density is given by the expression

AV Wi Wi
W WA+W3

K, (W)= @-2)

where A is a coefficient characterizing the road roughness (measured in V/m); n
is the exponent corresponding to the type of road under consideration; V, is the
truck’s velocity (m/s); W, and W, are the coefficients characterizing the power
spectral density of excitation (1/s); i=1, 2; and W is frequency (1/s).

Functions q;(f) and g»(¢) differ only in the time lag T due to the distance
between the front and rear axles and are related by g,(1)=¢,(:—T). The time lag
T is given by

B

=y

4-3)

where B is the truck wheel base (m).

The vibrations of the structure were estimated using the power spectral densit-
ies (PSD) of accelerations at the characteristic points of the units linked to
each other by connecting elements, the PSD of relative displacements, and the
angles. through. which._the bodies_rotate., The spectra were determined over a
frequency range five octaves wide, starting from 0.5 Hz with the resolution of
1/12 octave.
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Small vertical oscillations of the center of mass of a rigid body are described
by the following linear differential equation:

MZ"=2F,'

where M is the body mass; and F; is the force exerted by the ith connecting
clement.
Force F; is given by the equation

F,~=CiAi+K,~A,f

where A, is the ith element deformation; A; is the rate of deformation of the ith
element; C; is the equivalent stiffness of the ith element; and K; is the equivalent
damping factor of the ith element.

Small angular oscillations of a rigid body are described by the following linear
differential equation:

JU"':EM,‘

where J is the moment of inertia of a body about its center of mass; M;=FX;
is the moment of the force exerted by the ith connecting element; and X; is the
arm of the force.

Thus, having written down the equations for each body, we get a full system
of linear differential equations. Then, using the Laplace transform, we arrive at
a system of linear algebraic equations in the transfer functions describing the
effect of an input disturbance on the points of the system (see Fig. 4-5) where
C;and K;, i=1,...,10, are the values of equivalent stiffnesses and damping factors
of the ith element of the truck suspension.

Accelerations and deflections were calculated for the points of the truck (shown
in Fig. 4-6).

For each of the three types of road (asphalt, smooth cobblestone, and rough
cobblestone) the equivalent stiffnesses and damping factors of elements 7 and 8
(see Fig. 4-5) were taken from the results of dynamic bench tests. Accordingly,
in calculating the vibrations, the nonlinear properties of springs were taken into
account by choosing the corresponding equivalent stiffnesses and damping factors
for different levels of excitation. This was done in line with the method of
linearization discussed in detail in (Voevodenko and Pevzner (1985)). The method
implies that for a given disturbance (determined by the road roughness), a leaf
spring may be adequately simulated by a linear element with the corresponding
values.of equivalent stiffnesses.and damping factors within the said frequency
range.
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Figure 4-6 Z,~Zg are linear displacements; U,-U, are rotations; CM is the frame center
of mass; 1-12 are the positions of the road tests measurements points.

Truck Tests

The tests have been carried out in order to determine the spectra of vibration
accelerations of the structural elements of a truck subjected to a nominal loading.
Measurements were implemented in moving over various roads at testing grounds.

The accelerations induced by vibration at 12 points of the structure were
measured with accelerometers and recorded using a tape recorder (Fig. 4-6).

Note that the PSD of accelerations practically coincide for the points positioned
symmetrically with respect to the longitudinal symmetry axis. Therefore, the
data obtained for only one of a pair of symmetric points were used.

The experimental data were processed using an FFT-analyzer allowing plotting
the PSD of accelerations versus the frequency of excitation. The statistical error
of the experiment lay within * 15%.

Formulation and Solution of the Problem of Multicriteria Identification of the
Parameters of a Truck

The mathematical model is characterized by the following variables: the masses
and moments of inertia of units, the coordinates of the structural elements, and
the stiffnesses and damping factors of the connecting elements.

In carrying out laboratory tests the following variables of the truck under study
were determined: the masses and moments of inertia of the engine, cab, platform,
and frame, the coordinates of their supports, and the coordinates of the points
at which the engine, cab, and platform are attached to the frame. The dynamic
characteristics.of the leaf springs,.Cy,-Cg, K7, K3, were also determined experi-
mentally.
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Table 4-3
. Boundaries of
Ordinal Values variables
numbers of the
of Deno- Dimen- prototype lower upper Optimal
variables tation sion variables a¥ af* model
1 C N/m 7.7-10° 6.6:10° 8.8-10° 7.08-10°
2 C, N/m 3.6-10° 3.05-108 4.14-10° 3.29-10°
3 C; N/m 1.14-10° 9.6:10° 1.32-10° 1.06-10°
4 Cs N/m 6.5-10° 6.1-10° 8.8:10° 6.83-10°
5 Cs N/m 2.0-10® 1.6:10® 2.4-10% 1.8-10%
6 Ce N/m 2.0-10® 1.6:10 2.410% 1.92-108
7 C; N/m 4.2:10° 4.2:10° 4.2-10° 2.99-10°
8 Cs N/m 1.05-10° 1.05-10° 1.05-10° 7.21-10°
9 Co N/m 2.0-10° 1.6-10° 2.4-10° 1.63-10°
10 Cio N/m 3.6:10° 2.88-10° 4.32-10° 3.01-10%
11 K, N-s/m 2,000 1,200 2,800 3,400
12 K, N-s/m 7,800 4,700 11,000 9,210
13 K; N-s/m 5,000 4,000 6,000 4,920
14 K, N-s/m 4,000 3,200 4,800 4,376
15 Ks N's/m 25,000 20,000 30,000 25,700
16 Ke N-s/m 25,000 20,000 30,000 24,467
17 Ky N-s/m 14,000 14,000 14,000 14,665
18 Kg N-s/m 36,000 36,000 36,000 42,588
19 Ko N-s/m 4,000 3,200 4,800 3,908
20 Ko N-s/m 8,000 6,000 10,400 5,902

The following variables were to be identified: (1) The stiffnesses of connecting
elements, C;—Cg, Co, and Cg; and (2) the damping factors of the connecting
elements, K;—Kg¢, Ko, and K (see Fig. 4-5). These variables could hardly be
determined by either bench or road tests.

The boundaries of the variables form a 16-dimensional parallelepiped IT', see
Table 4-3.

Figure 4-7 shows the curves of the RMS spectra of accelerations: curve 1 has
been calculated using the mathematical model, and curve 2 was obtained by road
tests. (RMS is a square root of the PSD, G= \/g(f)).

In order to estimate the closeness of the calculated and experimental curves
one has to introduce adequacy criteria'2.

The degree to which curves match each other is estimated using the following
three groups of criteria:

2[4 practice, a researcher must often construct a multitude of curves by varying the parameters
of a mathematical model, and select the curve that approximates a given one in the best possible
way: Thisrissantypical-multicriteriasproblemsinnwhich the closeness of curves is estimated using
various adequacy criteria.
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Figure 4-7 1 is the calculated RMS spectrum of accelerations; 2 is an analogous plot
drawn using the road tests results; f;; and f;, j = 1, 2, are the frequency range boundaries.

1. Mismatch in the frequencies at which the local RMS maximum is observed:

D;=|Afimaxl, i=1,...,n;

2. The difference in the values corresponding to the local RMS maximum:

®,=|AGimad, i=n+1,...,2n

where n is the number of local maxima at the RMS plot.

3. The difference in the root-mean-square of accelerations within a given

range:
f2j f2j

D;=|(f g1(HdN"*~([ gx2(NdN'?|, i=2n+1,...,m
hij S

where j is either 1 or 2 depending on the measurement point under
consideration; f;;=0.5 Hz; f;,=/>1=6 Hz; and f,,=16 Hz.

Next, it is shown that there are 65 such criteria. Therefore, it was decided to
ignore for the time being the values of the spectra of relative displacements and
the angles of the structural elements rotations. The latter were taken into account
after the construction of the feasible solutions set using the aforementioned three
groups of criteria.

The mathematical model was calculated for 60 frequencies f; belonging to the
range {0.5 Hz-16 Hz].

Let us denote by fih, the frequencies at which the experimental RMS spectrum
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of accelerations attains its local maximum, and by G554, the values of the maxima.

Depending on the measurement point position, n varied from 1 to 3.

For all 12 measurement points 65 closeness criteria were needed: The first
group consisted of 22 criteria determining the values of frequencies (Hz), the
second group incorporated the next 22 criteria representing RMS (m/s?- \/FIE),
finally, the third group included 21 criteria representing the RMS accelerations
(m/s?). First, an interval (b, *0.1 f7:%,] Hz was chosen. Then, the local maxima
Gimax and the corresponding values of f;n.x belonging to the interval were deter-
mined, and criteria ®;=|f50—fimaxls i=1,...,n, and D;=|GB—Gimanl»
i=n+1,..., 2n, were calculated.

It is known that the differences between experimental and calculated frequen-
cies corresponding to local maxima of RMS spectra of accelerations may hardly
be compared for different frequency ranges. In this case, the estimated mismatch
between experimental and calculated values depends on the frequency range.

The experience of comparing experimental and calculated characteristics
allows making the following statement. Let the difference between experimental
and calculated frequencies Af; be measured not in Hertz but in one-twelfths of
the octave intervals between fihy and finax. Then these values characterize the
criteria ®; irrespective of the frequency range the values belong to.

Table 4-4 presents experimental'® values of ®& v=1,...,65. In line with
Section 4-2, ®; is included into the expression for respective closeness criterion.

The set of variables and the corresponding criteria vector determined by the
designers of the truck manufacturer will be called a prototype, see Table 4-3.
The studies were aimed at finding out how well the prototype was selected,
whether it can be perfected in at least the basic variables, and whether there
exist alternative solutions of interest to the designers.

Analysis in IT'

In all, N=4,096 trials were carried out, and constraints for the first 22 criteria
were determined. For the rest of the criteria no constraints were introduced,
since they could not be determined with sufficient accuracy. Only seven models
(the prototype excluded) proved to meet the aforementioned criteria constraints.
Since the latter were not determined for all the criteria, the seven models were
subjected to further analysis.

For each calculated solution, the RMS spectra of acceleration plots were
considered (12 such plots were drawn for each solution, corresponding to the
aforementioned points of the truck). Then, these plots were compared with the
ones obtained in the road tests.

Figure 4-8 shows the plots obtained for point 2 (see also Fig. 4-6). The solid
line corresponds to one of the feasible models, namely model 552, obtained by

The experiment was carried out for a smooth cobblestone road and the truck speed 60 km/h.
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Table 4—4
Measure- Measure- Measure-
Ordinal ment ment ment
numbers point The Ordinal point The Ordinal point The
of number value numbers number value numbers number value

criteria  (Fig. 4-6) of ®F” of criteria (Fig. 4-6) of ®{P of criteria (Fig. 4-6) of &7

1 1 2.12 23 1 0.712 45 1 2.04
2 1 6.5 24 1 0.9 46 1 5.46
3 1 9.875 25 1 0.836 47 2 1.28
4 2 10.0 26 2 1.3 48 2 4.06
5 3 1.75 27 3 0.546 49 3 0.69
6 3 10.125 28 3 0.787 50 3 1.67
7 4 1.25 29 4 0.537 51 4 0.507
8 4 10.75 30 4 1.07 52 4 1.125
9 5 2.125 31 5 0.771 53 5 2.07
10 5 6.5 32 5 0.769 54 5 3.4
11 6 9.5 33 6 0.794 55 6 0.833
12 7 1.25 34 7 0.527 56 6 1.98
13 7 9.75 35 7 0.937 57 7 1.01
14 8 1.25 36 8 0.530 58 7 2.7
15 8 4.5 37 8 0.595 59 8 0.537
16 8 9.5 38 8 0.409 60 8 0.570
17 9 175 39 9 0.433 61 9 2.5
18 9 9.5 40 9 1.61 62 10 1.26
19 10 1.62 41 10 0.865 63 11 2.0
20 11 9.75 42 10 0.225 64 11 12.4
21 11 9.87 43 11 4.05 65 12 6.85
22 12 12.0 44 12 2.26 — — —

solving the multicriteria identification problem. The dashed line corresponds to
road tests.

The characteristics of the model proved to be rather close to the road-test
results for all the other measurement points too.

Similar plots were drawn for the rest of the feasible solutions. No considerable
departures of the curves from the results of road tests were revealed. This
allowed concluding that all the seven calculated solutions have entered the feasible
solutions set D, in all 65 criteria.

The correction of the boundaries of the variables was of special importance in
solving the multicriteria identification problem. Since in problems of multicriteria
identification one cannot define a priori constraints on the variables, the latter
had to be corrected in order to be able to construct a parallelepiped IT¥, such
that the feasible solutions set Do, C II¥, and if for a parallelepiped IT, IT* € II
holds then D,  II. Figure 4-9 shows the histograms constructed for three, as,
ayp, and oy, of the 10 variables being corrected, for which the acceptable
solutions. concentrate near the ends.of segments [a¥}, o¥*]. The designers have
altered the corresponding boundaries of the variables. The other six variables in



116 | Multicriteria Optimization and Engineering

3.16

1.0

0.316

01

Y!IIVIII||IIII|IIII|I|I|II|II’|YIIl!!III

0.03lllLLlIlIlllllllllllllllllllllllllllllIlillJJ_ll
0.25 0.63 1.58 3.98 10 15.84 f

Figure 4-8 RMS spectra for the point 2 acceleration.

I1? were the same as in II'. (The construction of histograms and analysis are
discussed in Sections 1-3 and 1-4.)

Analysis in IT?

The same number of trials, N=4,096, were carried out in the 16-dimensional
parallelepiped I12. The same constraints on the first 22 criteria were preserved.
As a result, 11 models were obtained, for which the constraints are met.

The models were analyzed taking the remaining criteria, ®,3—®gs, into ac-
count. All of them have entered the feasible solutions set D,,. Hence, our assump-
tion about the presence of acceptable solutions outside IT! proved to be true.

In analogy to the seven models found earlier in IT', these models proved to
be acceptable as regards the closeness criteria taking into account the values of
the spectra of the relative displacements and rotation angles of the structural
elements.

In line with the design and technological requirements no further corrections
of constraints on the variables were carried out.

Thus, parallelepiped I1° proved to be the final one in the present analysis.

Similar analyses were conducted taking into account the tests carried out on
the other proving-ground roads. As a result, feasible solutions set D, being the
intersection of the feasible solutions sets corresponding to each of the three roads,
was constructed.

Three of the _models obtained. by solving the problem under consideration,
o> among them, have entered the set. These acceptable models were used for
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Figure 4-9 Initial, a¥*®, and new &**), boundaries of the corrected variables 3, 10,
and 11. o{* and &5 are the feasible solutions set boundaries in IT' and IT° respectively.

constructing parallelepiped II within which the problem of optimization was
being solved.

Formulation and Solution of the Optimization Problem

Let us consider the choice of criteria and design variables. As the design variables,
we have taken the stiffnesses and damping factors presented in Table 4-3, and
also the stiffnesses and damping factors of the leaf springs. Together they form
a 20-dimensional parallelepiped II. The boundaries of design variables were
chosen by the designers who took into account both the results of solving the
problem of the set D, determination and the technological potential of the plant.

The criteria may be conditionally divided into the groups of: (1) Comfort; (2)
durability; (3) load preservation; and (4) safety (see Table 4-5).

In line with ISO 2631/1-1985(E)'* the comfort criterion ®; was set equal to

“The_International Organization_for_Standardization, 1985. Evaluation of human exposure to
whole-body vibration-Part 1: General requirements, pp. 1-17.
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Table 4-5
Performance
Measure- criteria values
ment Performance for the
Ordinal point criteria optimal Meanings of
numbers of Dimen- number  values of the design (model performance
criteria Range sion (Fig. 4-6) prototype 1,820) criteria

1 w m/s? 4 2.149 1.55 comfort

2 L m 1 1.09-1073 9.84-107* durability

3 H m 1 3.8107* 2.8:107* durability

4 L m 2 1.75-107* 1.50-107* durability

5 H m 2 6.01-107* 4.8-107* durability

6 L m 3 7.85-107% 7.38-107* durability

7 H m 3 6.94-107* 6.71-1074 durability

8 L m 4 5.52:107% 4.42:107* durability

9 H m 4 5.33-107* 3.57-107* durability
10 w m/s? A 10.66 8.3 load preservation
11 L m 9 1.03-1072 1.037-1072 durability
12 H m 9 7.78-107* 6.012-107* durability
13 L m 10 1.02-1072 9.065-107° durability
14 H m 10 5.62-107* 4.11-107* durability
15 L m 11 2.75-1073 2.879-1073 durability
16 H m 11 3.46-1073 3.36-1073 durability
17 L m 12 3.72-1073 3.528-1073 durability
18 H m 12 2.58-1073 2.53-1073 durability
19 w — 11 6.26-107! 5.12-107! safety
20 W — 12 6.59-107" 5.296:107! safety

the frequencies-weighted RMS acceleration. Since in the case under consideration
the driver’s seat was unsprung, the accelerations at its surface and at the cab
floor under the seat (see Fig. 4-6) are approximately equal over the frequency
range of 0.5 Hz—16 Hz. Hence, criterion @, may be set equal to the ISO weighted
acceleration at the surface of the cab floor (see point 4 in Fig. 4-6). The vibration
of a driver was ignored.

The second group of criteria, ®,—~®9 and ®,;~P,g, incorporates the RMS
relative displacements.

As the load-preservation criterion, ®,, the trebled RMS acceleration of point
A of the truck platform over the entire frequency range has been taken (see Fig.
4-6). The value of this criterion must not exceed g=9.8 m/s2, since otherwise
a load may lose contact with the platform.

The final group was composed of safety criteria ®,9 and @9, which character-
ize the probability of a tire losing contact with the road surface:

RMS¢; |
— ¢, i=19,20, j=11,12

(Di=3. R]
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where RMSd, is the root-mean-square tire deformation at a point j (m); R; is the
static load within the tire-road contact zone (measured in Newtons) (see Fig. 4-
6); and ¢; is the tire stiffness (measured in N/m).

Each of the criteria has been calculated for the front and rear truck wheels.

If at least one of these criteria is equal to unity, then a tire may lose contact
with the road surface. Therefore, the constraints are imposed on these criteria,
and they must not exceed unity. Besides, Table 4-5 presents the values of the
performance criteria for the prototype.

The whole of the frequency range 0.5 Hz—16 Hz, denoted in the table by W,
was divided into two intervals, 0.5 Hz-6 Hz and 6 Hz-16 Hz, denoted by L
and H, respectively. The performance criteria were calculated either for each
interval taken alone or for the entire range.

The numbers of the points where the performance criteria values were deter-
mined (see Fig. 4-6) are presented in the fourth column of the table. In the
designers’ opinion, the prototype should have been substantially improved as
regards the comfort and durability criteria. Optimization was aimed at reaching
this goal.

In all, N=4,096 trials were conducted in parallelepiped II, 21 of which have
entered set D. Of the latter, 20 solutions were Pareto optimal.

Upon analyzing set D the designers preferred solution 1,820.

Table 4-5 presents the values of the performance criteria for the prototype and
the optimal solution. The design variables of the optimal solution are presented
in Table 4-3. By comparing them with the prototype design variables presented
in the same table we see that the optimal solution surpasses the prototype in 18
criteria, which include the most important ones. In fact, by comparing, for
example, the values of the first and the 10th criteria for the optimal solution and
the prototype, we see that they were improved up to 30%. However, solution
1,820 lags behind the prototype in the 11th and 15th criteria. It should be noted
that the values of the criteria have decreased insignificantly, by less than 5%,
and the criteria themselves do not belong to the basic ones. Thus, the solution
of the optimization problem has resulted in finding a solution surpassing the
prototype considerably.

Conclusions

1. By solving the problem of multicriteria identification, the values of the
stiffness and damping factors ensuring the adequacy of the truck model
under consideration were found. Feasible boundaries of the design vari-
ables for the subsequent solution of the optimization problem were also
determined.

2. The set of feasible models.of interest to designers has been found. Some
of the models surpass the prototype in the basic performance criteria.
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Recommendations for improving the truck suspension and, as a result, the
prototype basic performance criteria (comfort, safety, durability, and load preser-
vation) have been formulated.

Thus, to improve the design, the reduction of the stiffnesses of two engine
supports as well as of the front cab support and tires, was recommended. At the
same time, the stiffnesses of the suspension and of the rear cab support should
be somewhat increased. The values of the damping factors should be altered as
shown in Table 4-3 for the optimal model 1,820.
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Determination of Significant Design Variables

Many real objects are described by means of high-order systems of equations
with a large number of coefficients for unknowns. These coefficients play the
role of design variables to be varied when optimizing an object.

For the purpose of multicriteria optimization, especially if the dimension r of
the design-variable space is large enough, it is necessary to carry out a sufficiently
great number of trials for the construction of a feasible solutions set. This number
increases considerably with the r growth. This requires so great an amount of
time for seeking the optimum solution that the optimization cannot be carried
out in many cases.

To solve multicriteria optimization problems, it is advisable to use methods
allowing the reduction of the dimensions of the design-variable space by eliminat-
ing the insignificant design variables—those that do not perceptibly influence
the values of the criteria ®,, v=1,k. In other words, ¢ of the significant
design variables, g<<r, to which the criteria are sensible, are determined as
a result of the evaluation of the criteria sensibility to the design variables
change. And further, in solving the optimization problem, these g of the
design variables are varied. Here we can single out two approaches in solving
this problem. The first approach is universal. The regression analysis technique
may be referred to this approach. The second approach comprises methods
allowing us to tackle problems of some particular classes taking into account
their inherent features. The energy balance principle for investigating dynamic
problems is an example of the approach. To this approach we can refer
methods taking into account the influence of the system design variables that
determine interactions between the subsystems. If these interactions happen
to be weak, the influence of the aforementioned design variables may be
neglected under certain conditions.
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5-1. Evaluating Performance Criteria Sensitivity Through Regression
Analysis Technique

We now introduce certain definitions and notations needed in the sequel.
The mean of a function flar) in a domain D (DCII) is the integral:

ED(f)=I£ﬂa)da -1

The variance of a function fler) in a domain D is defined by:

varp(f)=[f (Ae)—E(f))* da]'”* (5-2)
D

The Ly-norm of a function {a) in a domain D is defined by:
I7llo=1 (Rey’de]'”
The L,-distance between two functions fla) and g(e) in a domain D is defined
by:
df.9)=l fgllo=t] (fle) — g(@))dar] 2.

The L,-distance satisfies the triangle inequality:
d(f.g)=d(f,z)+d(g.2). (5-3)

The scalar product of two functions ) and g(e) in a domain D is defined to
be the integral:

(f.8)p=E(f.8)= ,{f (o)g(a)da

The coefficient of covariance between two functions fla) and g(a) is defined to
be the scalar product of the centered functions fla)—Ef{a) and g(a)—Eg(at):

¢re=E(f—Ef,g—Eg)=] (la)—Efla)) (g(e)—Eg(a))de
D
and the coefficient of correlation between two functions fila) and g(a) is defined

as follows:

g 13
% (varp(fvarp(d)) 2
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If integration is taken over the entire parallelepiped II, we will not indicate the
domain of integration.

Standardization of Variables

Here let us make a remark. Irrespective of what method we will apply to
evaluate the significance of design variables, the first step always consists in
standardizing the variables, that is, the design variables and the criteria ®, (o)
(v=1,k). Let z be one of these variables. Standardization of z lies in changing
over to a new variable:

_ z—E(2)
1™ (varp(2) 2

After this transformation, we have E(z,)=0 and varp(z,,)=1. In the sequel these
equalities are always assumed to hold for all design variables and criteria.

Evaluation of the Significance of Design Variables

How can the significance of a design variable a; be evaluated for some particular
criterion? There are many ways of doing this.

Significance measures based on the norms of partial derivatives

The first of these methods is based on the use of the mean of the square or
the absolute value of the partial derivative d®/da; in the parallelepiped II. In
what follows we consider the mean squares of derivatives only. Accordingly,
the proposed criterion can be expressed as

2
D) f oP(ar)
oy || da (5-4)

he= | ’ da;

Indeed, if the design variable o; has in general no influence on the functional
®(e), then the derivative 9®/0c;=0 in the parallelepiped IT and the mean of
the square of the derivative should also be zero (I;,,,=0). At the same time, it

is reasonable to assume that the criterion ®(a) is more sensitive (on the average)
to the variations in the parameter (the design variable) a; than to the variations
in the parameter o, provided Iy o>/ Loy

In the expression (5-4) we first determine the derivative, then square it, and
finally integrate it to calculate the norm. Or we may proceed differently. We
can first average (integrate) the criterion ®(ax) with respect to a set of design
variables B;s:i:€x5: ;= (Qtyseems@i=13:0415%- - ,0.,) derived from a after eliminating
the design variable a;, in other words, we pass on to the function:
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q)(ax)_ f q)(al’Bl)dBl’ (5'5)
B.

where Ilg, is a parallelepiped in the space of the design variables ;. Now we
differentiate the function thus obtained with respect to a; and then calculate its
norm. As a result, we arrive at the significance measure

2 (d®(ay) ’
= f (W) day, (5-6)
11,

«;

d®a;)
boi= ‘ { day;

However, in averaging a function of the type (5-5), we may obtain ®,(a;)=
const. For example, consider a function of two variables, say ®(a)=sin a;
sin a; (0=a;=2m, i=1,2). Now on averaging with respect to a,, we obtain
®,(a;)=0. Therefore, in general, we have to use modified criteria, which leads
us to the function

D)= [ D*(;,B) dB;, 57

i

Other modifications of criteria helpful in increasing the computational effi-
ciency are considered in describing the respective algorithms (see Estimates of
the significance measures, I; and I,).

Significance estimate based on averaging with respect to a design variable

In this case, to estimate the sensitivity of a criterion ®(a) to a design variable
o;, we first eliminate the influence of this design variable on the criterion ®(«)
by averaging the criterion with respect to «; and thus obtain a function of design
variables ;:

f P(a)do;

o;

(B =

a** a*

Then we compute the sensitivity measure

J (B —D(@))? dex
B ="
e varp(®P) ’

(5-8)

If ®(ax) does not depend on «;, then obviously y,(B,)=®(a) and I3,4,=0. It is
also _reasonable to_assume that, if 13,a,~>13,a,-, then the design variable a; exerts
greater influence on ®(a) than the design variable o;.
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Use of approximations of dependencies for estimating the significance of
design variables

In order to estimate the degree of the significance of the design variables we
may from the very beginning make an attempt to use, instead of the criterion ®(o)
itself, some or other its approximation that has a sufficiently simple analytical
expression

D(e)=D(a)+d(ar) +e, (5-9)

where ®(a) is the approximating function from some class of functions [F.

In (5-9) d(e) is the approximation error due to the improper choice of the approxi-
mating function ®(er). This error must satisfy the condition [d(a)da=0. While
“fitting” the approximation, an attempt is made to make “on the average” the quan-
tity d(o) minimal, say by minimizing ||d}® or, in other words, to minimize the L,-
distance between the initial function ®(e) and its approximation.

Also, € is the random error due to the inaccuracy in the measurement of the
values of ®(e), to the presence of design variables which have not been taken
into account, etc. Its mathematical expectation should be zero, that is, E(€)=0.

In our case (active computational experiment) measurement error may arise
solely due to the insufficient accuracy in computing the values of ®(a), for
example, in solving differential equations, and/or due to round-off errors. In
what follows we neglect the error €.

Suppose that we have derived the approximation CIJ(a) of the criterion ()
and let 82=d*(®,®)/varp(P). Now eliminating «; and using the triangle inequal-
ity, we obtain

(i, ®)=d(®, D) +d(;, B)=d(®, &) +d(U;, ) +d(D, ).
Hence, we have

I3,“isi3’°‘i+28’

where

I (B —D(a)) dax

B o=
o varp(®)

Therefore, if the approximation is of good quality (8 is small), the estimate of
the measure of significance I3 ,, will be close to its true value.
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Use of regression analysis for approximating the performance criteria

We will apply the regression approach to derive the approximation fi>(a).

From the viewpoint of regression analysis the design variables a;,...,a, are
input variables governing the conditions for the functioning of the system. We
will also call these design variables predictors or explaining variables.

The criteria ®; are output variables that we may also call dependent or resulting
variables. Suppose, as a result of modeling, we have obtained N vectors of
dimension (r+k) of the type:

oY,.... 00, af,....0af j=TN.

The vectors form a data matrix Z of dimension N X(r+k) with its rows consisting
of components of these vectors. The matrix A composed of the values of the
design variables, with its rows being formed by components of the vectors o’
(j=1,N), is, from the viewpoint of regression analysis, a design matrix. Therefore
a data matrix is obtained in the course of an active experiment.

Basic regression models used in estimating the significance measures

Now, we will approximate the dependence ®(a) with the help of linear or
generalized linear model:

<I>(a)=b0+ i b,-a,-+d1(a) (5-10)
i=1

B@@)=by+ 3 bB(a)+dx(e) (5-11)

o@=3 g (_il b,-a,-)+d3(a) (5-12)
j= i=

In all the_ three cases, parameters b; are to be estimated. Moreover, functions
g() and ®,( ) in (5-11) and g;( ) in (5-12) are to be estimated too. The functions
and parameters are evaluated from the minimality condition of the integrals

8 =Jd (da (j=1,2,3).
1
Linear multiparametric regression (LMR)

Linear multiparametric regression (Draper and Smit 1966) gives the approxima-
tion of the function to be evaluated as follows:

y=B'X)+by+3, (5-13)
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where B=(by,...,b,)’ is a vector of unknown coefficients of the regression equa-
tion (5-13) and (B'X) is the scalar product of the vector B and vector of the
values of variables X. Here, any criteria ®,(ax) (i=1,k) can be taken as the
variable y, and the vector X represents some subset of the variables from a or
predefined functions of these variables. For example, if there is only one variable
x, then by introducing the variables x;=x', i=1,q, we obtain a polynomial model.
Of importance here is the fact that the model should be linear with respect to
the unknown coefficients of the regression equation (5-13).

The parameters of B and b are estimated by the least squares method (LSM)
(Seber 1977; Aivazyan et al. 1986), i.e., from the condition of minimum of the
sum of the squares of residuals or mismatches:

62=§ (Yi_(B'Xi)_bo)z__)

i=1

min,

N B,

where y; is the criterion value at the ith point; and X; is an appropriate set of
design variables values or functions of them.

This result in a so-called normal system of equations (Seber 1977; Aivazyan
et al. 1986), whose solution yields the desired estimates of the parameters:

{SB‘:éyx (5_14)

by =E(y)—(B'E(X))

where the matrix S=C’'C is called the matrix of normal system of equations; C
being a design matrix (in case the vector X coincides with the vector of the
design variables «, i.e., when we approximate the criterion ®(a) in the space
of the initial variables without using any additional functions of the initial vari-
ables, we find C=A).

C,x=E(yX) is the vector of covariance between the variable y and the variables
from X, and CyX is its estimate obtained by averaging over the elements of the
design matrix of the experiment.

Quality of linear regression equation we will measure with the help of the
determination coefficient

) 1-%
varp(y)’

Let us consider in more detail two regression models linear in parameters of
the regression-equations The first.:model.uses only the o; as the variables, whereas
the other involves the squares of o; (i.e. o2, i=1,r) as additional variables.
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Regression linear both in parameters of the regression equation and in a

The analytical expression of the model is given by (5-10). Its design matrix
C is simply the matrix A consisting of the design variables a found in an
experiment. Since, by conditions of generation, the variables a,,...,a, are inde-
pendent, in this case the matrix of the set of normal equations is also given by
S=AA'. Normalization conditions imply that the diagonal elements of the matrix
S are equal to unity (E(a?)=1), while off-diagonal elements are close to zero.
(Since p;=E(a;0)=0 for i#j, the difference from zero is only due to the error
in evaluating the integral where pj; is approximated by a sum over a finite set
of points.)

Hence, it follows that the matrix S is well-conditioned (Aivazyan et al. 1986,
Seber 1977; Belsley et al. 1980) (correlations between the explaining variables
are small) and the solution of the system of normal equations computationally
does not cause any difficulty.

Since the variables ® and a; (i=1,r) are normalized, the regression coefficients
b; coincide with the correlation coefficients between @ (®=y) and a;.

Regression linear in parameters of the regression equation with the
addition of squares of explaining variables o

The regression equation in this case is of the form:

y=bo+bia;+,..., by 105+, ..., + b0, (5-15)

Here, we have a 2r+ 1-dimensional vector of coefficients (the regression equa-
tion parameters) by, by,...,br415---,Drtr-

The rows of the design matrix C contain 2r elements (in each row). The first
r elements of the ith row of the matrix C coincide with the elements of the
corresponding row in the design matrix A. The other r elements are the squares
of the values of the design variables al’ corresponding to the point @, Thus
the jth row (the row corresponding to the jth experiment) of the matrix C is

o0 (@), (a2,
The off-diagonal elements of the matrix of normal elements are again close

to zero here, because

E(aioc}")=0 (i#j) (by virtue of independence) and
E(a})=0 (by virtue of symmetry).

(Recall that the variables are normalized and centered.) Off-diagonal elements
are, as before, different from,zero only.due to the replacement of integrals by
the sums over finite sets of points.
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Thus, in this case the matrix of a system of normal equations is also well-
conditioned.

Estimation of significance measures on the basis of linear regression

In the case of regression linear both in parameters and in variables «, for the
three significance measures we have

— — —2
Il,a,»_12.a,~_13,a,»_bi ’

and for regression involving the second powers of the variables, we have
Il,ai=12,a,»=bi2+4bi2+r

9
1§,ai=b,?+2b,-b,.+,+§b,.2+,

These formulas can be easily derived by direct calculating expressions (5-4),
(5-6), (5-8), after substitution of y from (5-13) or (5-15) for ®.

Drawbacks of estimating the design variables significance by linear regres-
sion. Suppose we have obtained the coefficients b; of the variable a; to be close
to zero, that is, b=~0. Does it imply that the design variable is of small signifi-
cance? Let us examine in detail how to compute the coefficient b;. Since in this
case the matrix of the system of normal equations is almost a diagonal matrix
with diagonal elements being equal to unity, we have (y=®(at))

b= Pd(a)o; = III a;P(a)da.

Integrating by parts, we obtain

6a,~
II

that is, b; is equal to the weighted mean (with weight w(a)=a?) of the partial
derivative of ®(a) with respect to a;. Its value may be close to zero even if the
value of the integral I; o, is considerable.

In practice, we may use the following rule: If the determination coefficient is
not very close to 1, smallness of the coefficient b; does not imply that the
significance of the design variable o; is small. If, however, the coefficient b; is
considerably different from zero, the design variable should be regarded as
significant.

Analogous reasoning can also be applied to more complicated parametric
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regression models. Therefore a need arises for direct estimating the measures,
I, and I,, of significance of the design variables. These estimates are obtained
with the help of modified local parametric regression analysis techniques.

Projection pursuit regression

This approach is used for estimating parameters and functions in regression
models of the kind (5-12). The technique using the projection pursuit regression
for approximating regression functions was suggested by Friedman and Stuetzle
(1981).

Suppose, we have a data matrix consisting of N (p+1)-vectors (y,X) (p is
the number of the components of the vector X, i.e., the number of explaining
variables) and our aim is to restore the function of regression of the variable y
using the components of the vector X. Assume now that the regression function
can be represented as follows

y= i g (UiX)+e, (5-16)
j=1

where g;( ) are unknown functions; U; are unknown vectors, and q is the number
of projections, which may also be unknown.

Let us describe the computation procedure. First, we seek a function g;( ) and
a vector U, such that

N
8= 2 (—&1(UiX))>—>min.
=1

Since the variable y is normalized, we find the quantity 1—87 to coincide with
the determination coefficient.

Nonparametric estimates of local regression (knn-smoothing)

One of the possible and sufficiently effective methods of nonparametric estima-
tion of a one-dimensional regression function (and thereby, the conditional mean)
lies in evaluating the local polynomial regression in the neighborhood of the
point under consideration. We will study polynomials of orders 0, 1, and 2
that correspond to local mean, local linear regression, and local second-order
polynomial regression, respectively.

For this purpose we apply order statistics. Let zj,...,z, be a sample of the
explaining variable values, and z,...,z» be the corresponding order statistics
(Aivazyan et al. 1983), that is, the values z,...,z, arranged in the increasing
order.

Let ¢ be a positive integer such that <<n/2. Now we search for the predicted
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value of the dependent variable J;, at the point z(;), using a polynomial regression
of orders 0,1, and 2 constructed on the basis of observation results

Z(—1) 45 Z(G=D)p+1s Z(s+» 2+t Z(j+0)_» (5-17)
where (jt6- = min(n,j+1), —1)4+ = max(1, j—1).

The number of observations may vary from ¢ to 2¢, depending on the position
of the point z(;. Linear regression and polynomial regression of the second order
are evaluated by the least squares method.

This procedure can be modified in different ways, for example, the very point
z(;) can be excluded from “training.”

Now let y«) and ) denote, respectively, the observed and predicted values
of the dependent variable at the point z,.

Let us now introduce a mean normalized square deviation:

1Y y—hw)
82—~ k)Y )
SD=% ngl varg(y) (5-18)

The quantity (1—52) can be regarded as a nonparametric estimate of the determina-
tion coefficient for the dependence between one-dimensional y and z.

If the points z; are the projections of multidimensional points, that is z;=(U'X,),
then we can use the derivative of 8% with respect to U and thereby obtain an
estimate of the gradient needed for implementing the effective optimization
procedure.

Estimates of the significance measures I, and I,

We will evaluate the criteria /) o, [2,o, using the local-parametric regression

(see, for example, Aivazyan et al. (1983) and Aivazyan et al. (1986)) and
modified ACE-regression (see Breiman and Friedman (1985)), respectively.

Local-parametric approach to estimating the criterion I,

The basic idea here lies in approximating the functional dependence ®(a) not
over the entire experiment domain II, but in the neighborhoods of a certain
subset S of randomly chosen elements of the design matrix A. In the limiting
case the subset S may contain all the points (rows) of the matrix A; but usually
this subset is formed by choosing n=N points from A.

Without loss of generality, we assume that the variables a are preliminarily
normalized so that the mean of each variable is zero and the variance is equal
to unity.. As. the neighborhoods, we will take spheres.

If the function ®(«) is twice differentiable with respect to e, we can write
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its Taylor expansion in the neighborhood of a sphere (o) of radius p with
the center at apES, as

‘I’(a)=®(ao)+(3'(a—ao))+((a—ao)'s(a—ao))+9(p3)- (5-19)

Here, B= grad(<I>(oL))|.,,=.,[0 stands for the vector of the first derivatives of the

function @ and S represents the matrix of the second derivatives.

Now applying the least squares method to the elements of the design matrix
that fall inside the sphere {),(oy) to evaluate the linear regression (see Linear
multiparametric regression (LMR)), we obtain the estimates of the first derivatives
as the coefficients in the linear regression equation (5-13).

In practice, we find for the point & the sphere of minimal radius that contains
exactly K neighboring points, rather than specify the radius p of the sphere
beforehand. Thus, the coefficients of the linear regression equation are evaluated
from the data matrix corresponding to K points. Evidently, the inequality K<r
must hold in this case.

Estimate of the significance measure I, : Specific features of the alternate
condition expectation (ACE) algorithm

Let us fix one of the design variables, say, «;. The significance measure I,
can be evaluated with the help of a modified ACE-regression algorithm (Breiman
and Friedman 1985).

Estimating the averaged criterion ®i(a;) (see (5-7))

In order to apply the ACE-regression for approximating the unknown function
®,(a;) and its derivative, first we have to derive the values of this function at
least with some error, i.e., to average the criterion ®(a;), at a;=z, over the
design variables contained in the set B;.

Several approaches can be utilized for this purpose. We will apply the technique
based on the use of zero-order knn-smoothing (for details, see Nonparametric
estimates of local regression (knn-smoothing)).

In our case this approach is applied as follows. First, the values of ®(a),
where o € A are arranged in the increasing order of the values of o; (o is the
ith coordinate). Then we fix a certain number K, of “neighbors”. Let
a;1)<...<ayu be the variational sequence (order statistics) derived for the values
of o;. For the estimate of the function ®4a;) at the point a;=a(;), let us take
its mean over the smoothing interval L (Kp), i.e., over the points with the
numbers (j—Ko)+,..., (j+Kq)-

- — 1
D) =Pi(a;() =n_(,) %‘I’(aiw, Bin),
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where n; is the number of points within the interval L(;) (Ko) and summation
is taken over the points of this interval. The quantity ®;;, is exactly the estimate
of the value of the function ®,(a;) |°‘i=ai(1)' This estimate can be expressed as

D,)=; (i(j)) +dj)+ 1), (5-20)

where d; is the regular error due to the averaging of the variable a; over an
interval L;, (Ko) of a finite length h;; 7(; is the random error due to the estimate
of the integral (5-5) made using a finite number n;, of randomly distributed
points in the parallelepiped Ilg. Since the experimental points are uniformly

distributed, hj=n;/N; d,~~0(h]3 ). The mean square of 7; is related to the variabil-

ity of the criterion <I>(a)|ai=a in the parallelepiped Ilg: the greater the scatter

i)
of the values, the greater the mean square of 7(;). Here, as everywhere in nonpara-
metric estimation, we find ourselves in a situation where the regular and random
errors exist in a balance: On reducing the regular error by decreasing the interval
length Aj, (in our case, the number of neighbors Ko), we increase the random
error 7(;) and vice versa. Both the errors can be decreased simultaneously only
by increasing N—the number of experiments.

Removal of the criterion component linear in design variables

The random component 7(;, can however be decreased by modifying the crite-
rion ®(a) so that the modified criterion would have less scatter in the parallelepi-
ped Ilg,. But here, care should be taken so that calculation of the modified

criterion would not become essentially more complicated as compared with the
calculation of the initial criterion.

If the criterion ®(e), linear in design variables, a is approximated by the
least squares method, the determination coefficient quite often lies in the range
==(.5-==0.8. Though such an approximation cannot serve as a basis for choosing
the insignificant design variables relying on the values of the regression coeffi-
cients, it can nevertheless be successfully applied to modify the criterion ®(a).
It is just in evaluating the significance of the design variable a; that we use the
modified criterion

D(o)=D(a)—(G:B)~goir (5-21)

where G; is an (r— 1)-dimensional vector of the coefficients of the linear regression
of the criterion ®(«) using the design-variable vector B; reduced by eliminating
the design variable a; and gy; is the free term in the regression equation. Thereafter
the value of the criterion ®(e) is squared and we obtain the modified criterion
<l>mod(a)=(i)2(a), whichswerapplysinsthe sequel. In order to modify (“clean’)
the criterion it is more effective to use linear regression containing second-order
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terms or projection pursuit regression with a small number of term functions
(g=1,2).

From the foregoing it is clear that when we change over to a different design
variable (estimate of its significance), the vector G; is to be recalculated.

Estimating the derivative

After determining the values of the function ®,(c;) (or the function correspond-
dd,

ing to the modified criterion) the derivative E‘l is evaluated as follows: first a
(]

new number K of nearest neighbors is fixed and then the first- or second-order

knn-smoothing is applied to the function ®;(a;) (in other words, the estimates

of local linear or quadratic regression are constructed).
Suppose in the neighborhood of the point a;;) we obtain the following regres-

sion equation:

®(a)=ao;+b (first-degree equation),
®(o))=co?+do;+e (second-degree equation).

Accordingly, the local estimates of the derivatives are

1]

=, _d®; _ | aforlinear regression,
W™ da; ~ | 2coy+d for polynomial regression

The estimate for the measure of informativeness of «; is
1Y -,
Lo~y 21 (@)
]=

Algorithm

Finally, the algorithm for determining the significance of design variables for
the criterion I, o, can be written as follows:

Step 1. The design variables are normalized so that they all have unit
variance and zero mean.
Step 2. Cycle with respect to i=1,...,r. _

1. Estimation of some approximation ®(f;) of the criterion for the
reduced design-variable vector B;, say, linear regression coeffi-
cients, (B,)=(G::)+go:.

2. Change over to.the modified criterion.

Droa(0)=(D() — D(B))*.
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3. Ordering the values of the design variable o;. Zero-order
smoothing of function @, 4(at).

4. Estimating the derivatives at the points of the variational series
a;j and evaluating the significance measure for the design
variable «;.

End of the cycle with respect to i.

Step 3. Arranging the design variables of a in the order of their significance
increase.

Example

Determination of significant design variables in operational development of a
truck (see Section 4-5).

Estimation of the closeness criteria, ®,, sensitivity to the change of the
mathematical model parameters, o;, (the multicriteria identification
problem)

As the variables, we consider here the equivalent stiffness coefficients and
damping factors (see Table 4-3 and Fig. 4-5). The criteria of the aforementioned
three groups, ®!, ®?, and ®?, are regarded as proximity indexes.

To investigate the sensitivity of the criteria with respect to the variables we
use the significance measure I,. A sample of 512 trials within parallelepiped IT!
has been considered.

Table 5-1 gives the values of the significance measure I, for each reduced
variable and each criterion. The closer the values in the last column to unity,
the higher is the accuracy of approximating the respective criteria by using
formula (5-11).

The dimension of the thereby obtained matrix of values of the measure 7,
values is 65X17 (65 proximity criteria and 16 variables have been considered,
the last, 17th, column characterizes the accuracy of approximating each of the
criteria by using formula (5-11). This column gives the values of determination
coefficients). Because of the large size of the matrix, Table 5-1 gives only a
fragment for three proximity criteria ®,, ®,3, and ®34, and 11 variables.

Table 5-1
Determination
431 a Qs Qg Qg a0 Qg Q15 g Qg Qo coefficients
P, 0.674 0.017 0.0 0.0 0.053 0.003 0.007 0.0 0.0 0.001 0.0 0.9

®,;  0.003 0.0 0.0 0.002 0.006 0.013 0.605 0.0 0.0 0.012 0.03 0.97
®, 00 00 0.0 0.0020.01 0.700 0.005 0.0 0.0 0.012 0.03 0.97
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Analyzing the matrix, we select the variables whose influence on all criteria
is sufficiently small. We consider the influence of a variable on a criterion as
small if the corresponding value of I, is less than 1% of the sum of elements in
the row corresponding to the criterion. In Table 5-1, such variables turn out to
be as, ag, a1, and a;e. In terms of the truck characteristics, as and a5 are the
values of the equivalent stiffness coefficient and damping factor, respectively,
for the front support of the platform; ag and a6 are analogous variables for the
rear support of the platform.

Table 5-1 shows that the influence of these variables does not exceed 1% (for
criteria that are not presented in Table 5-1, the results are similar).

We can try to reduce the number of variables to be varied when optimizing the
system by eliminating insignificant variables. In this case, the insignificant vari-
ables are kept constant when calculating the characteristics of the mathematical
model. For example, they can be chosen to be equal to the values of the respective
parameters of the prototype. Reducing the variable vector dimension, we thereby
reduce the time required for carrying out the computational experiment.

To confirm the applicability of such an approach, we randomly selected 100
models (solutions) within 16-dimensional parallelepiped I1' and calculated the
values of all closeness criteria for each of the solutions. Then the closeness
criteria were calculated for the 100 models with the values of the insignificant
variables, as, ag, o35, and a6, being fixed and equal to those of the prototype.
Finally, the corresponding criteria values calculated for 16- and 12-dimensional
variables vectors were compared with each other.

The analysis shows that for the majority of criteria, the discrepancies are zero
or rather insignificant. It allows making a conclusion that the values of the
closeness criteria changed insignificantly after having reduced the dimension of
the parallelepiped. This confirms the expedience of reducing the dimension
of the variables vector.

Determination of the performance criteria sensitivity to design variables in
the problem of improving the automobile suspension system

When solving this problem we considered 20 performance criteria reflecting
the requirements of comfort, durability, load preservation, and safety. Twenty
design variables were varied.

We have taken a sample of 512 trials and determined the influence of the
design variables on each of the criteria. Like in the identification problem,
insignificant design variables have been determined. These turn out to be as,
og, a5, and a 6. Thereafter, these design variables were no longer varied. The
optimization results in this case coincide with those obtained in Chapter 4 (see
Table 4-5). In some cases, the reduction of time necessary for the optimization/
identification.of the variables.can.be.achieved by using regression methods. The
presence of insignificant variables can be of practical use. Without breaking the
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optimality, a designer can adjust these variables so as to meet some additional
requirements, for instance, technological conditions of the manufacture process.

5-2. The Energy Balance Principle for Determining the Dependence of
Criteria on Design Variables

The proposed technique is based on the parameter space investigation method
and the energy balance principle (Masataka 1977; Gurychev et al. 1985). The
technique can be used for optimization of a wide class of mechanical structures
in which:

* The potential and kinetic energies are distributed between subsystems
unevenly.

+ The dissipation is small, and natural modes of oscillations differ insignifi-
cantly from natural modes of oscillations in the conservative system.

» performance criteria reflect the static and dynamic compliance of the
system, resonant frequencies, vibration resistance, metal consumption,
etc.

It is known that the kinetic (T) and potential (II) energies of the system can
be represented as follows

1

& 2
2_2 CiXj,

i=1

N[ —

n
T= 2 mi)é,-z, =
i=1

where x; are physical coordinates of the system, while m; and ¢; are its inertia
and stiffness coefficients, 1=i=<n.

Following the energy balance principle, for each of the n natural frequencies,
we determine the contribution of individual elements of the structure to the
kinetic (T) and potential (IT) energies. The elements are characterized by different
design variables (geometrical dimensions, stiffnesses in different directions,
masses, damping factors, etc.).

To determine T,, and II,, corresponding to the mth natural frequency w,,
(1=m=n) we use the following relationships (Masataka 1977; Kaminskaya and
Gringlaz 1989)

wrzn n n

Tm=_2' dm 2 2 Mij’Yim’ija
i=1j=1 (5-22)
qm n n
Hm=7 202 KifYimYjm
i=1j=1
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Here, M;; and Kj; are the elements of inertia and stiffness matrices; Y;» and Yjm
are coefficients characterizing the shape of the system oscillations corresponding
to the natural frequency w,,; i and j are the numbers of the generalized coordinates;
n is the number of degrees of freedom; and g,, is a normalizing factor.

In many cases, for each of the natural frequencies, one can indicate some
elements whose potential and kinetic energies many times exceed the energies
of the other elements. To determine such significant elements it is convenient
to normalize the coefficients vy, and v, so that both T, and II,, corresponding
to the natural frequency w,, are equal to unity. Then we select the significant
elements whose contribution to the kinetic or potential energy is large. When
doing this, it is necessary that the sum of energies of the other elements not
exceed a prescribed level, such as 10% or 20% of the total energy of the system.
Based on this, we determine insignificant elements. By analogy, we will consider
the design variables describing the aforementioned elements as significant or
insignificant.

However, we still have to check whether the insignificant design variables
essentially influence the performance criteria. Depending on this, we can conclude
about the expedience of varying the insignificant design variables when solving
the optimization problem.

Let us describe the main stages of problem solving.

1. The designer determines an r-dimensional vector of the design variables
and specifies the ranges of their variations: a*<a,<a}*, i=T1,r.

2. According to the parameter space investigation method, n tests are carried
out, with n being comparatively small. In each ith test, we determine
significant design variables /;.

3. Having completed all n tests, we find the number of significant design
variables, [

I=1+b+...+1,
where [/ is the number of the significant design variables in the ith test
that were not significant in all previous tests.
4. A new, l-dimensional, vector of the design variables is formed, /=r.
5. The errors are determined:
@}~

o, 100%, i=1,n (5-23)

AD= ‘

where @/ ; and @', ; are the values of the vth criterion in the ith test; r
and [ being the dimensions of the respective vectors of design variables.

6. The conditions ACD{,’,’,-SAQ;‘,‘* are.checked, where AdD#* are the admissi-
ble errors. In case these conditions are satisfied, we solve the multicriteria
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optimization problem, with the dimension of the design-variable vector
being /, and the number of tests being N, N>n.

7. For all obtained feasible solutions, the conditions Ad>{;,l,-SA(I)‘,',‘* are veri-
fied. If these conditions are satisfied, we consider the feasible solutions
as having been obtained with the prescribed accuracy.

In the next section, we will consider the determination of significant design
variables as applied to the example of designing the grinding machine structure.

5-3. Example: Determination of Sensitivity of the Cylindrical Grinding
Machine Structure Criteria

The Basic Elements of Calculation Schemes and Formation of the
Equations of Motion

Numerous experimental data indicate that the most intense vibrations of tools
and workpieces, caused by vibration of the machine-tool structure, occur, as a
rule, within the frequency range up to 150 Hz. Therefore, in calculation, the
majority of the structure elements may be modeled by beams and rigid bodies.
The former simulate slides, columns, beds, and traverses.

Characteristically, the proper deformations of rigid bodies are small compared
to contact strains in joints (e.g., spindle and wheel heads). Rigid bodies and beams
are connected by weightless elastodissipative elements whose characteristics are
determined by the parameters of joints, guideways, etc. A structure interacts
with the foundation via the support elements of a machine tool.

In dynamic calculations structures are usually considered linear oscillatory
systems described by the equation of motion

MX+DX+KX=F()

F(¢) is an n-dimensional column vector of external forces; M is the matrix of
inertia; K is the stiffness matrix; and D is the damping matrix.
In considering structures the model of viscous friction is used.

Construction of the Mathematical Model and Determination of the Static-
Dynamic Characteristics of a Structure

Cylindrical grinding machines are intended for machining cylindrical, tapered,
and end-face surfaces of rotational parts.

A workpiece is held between the centers of the workhead and tailstock, which
are mounted on the rotatory table. The main motion is the grinding wheel rotation.
A workpiece is rotated,in the centers,,and the cross and longitudinal feeds are
implemented by displacing the wheelhead and the work table, respectively.
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Experiments have shown that the cylindrical grinding machine under consider-
ation loses stability at a frequency of 74 Hz.

The analysis of experimental modes of vibration has allowed construction
of the calculation scheme of the machine tool’s structure (see Fig. 5-1). The
mathematical model shown in Figure 5-2 incorporates concentrated masses and
elastodissipative links. The number of degrees of freedom is 48.

In Figures 5-1 and 5-2 K;_; is the reduced stiffness of the grinding wheel-
wheelhead joint; K, 3 is the vector of stiffnesses of the spindle head guideways
and the feed drive, K>_3 = (K3 3, K3 3, K3 3, K§*3, K95, K37%3); K3 4 is the vec-
tor of stiffnesses of the joint between the front and rear portions of the machine
tool bed; K, 5 is the vector of stiffnesses of the table guideweays and drive;
Ks_g and Ks_; are the vectors of stiffnesses of the joints connecting the workhead
and the tailstock with the table; Kg g and K;_g are the vectors of stiffnesses of
the workhead and tailstock centers; K is the axial stiffness of the supports under
the wheelhead bed; K, is the axial stiffness of the support under the table bed;
and M;, i=1,...,8 are the masses of the basic units of the cylindrical grinding
machine under consideration.

The frequency and amplitude/phase responses within the cutting zone were
calculated using the finite element model of the structure and compared with the
corresponding experimental characteristics. It was found that within the range
of the most vibroactive frequencies, 5070 Hz, the experimental and calculated
characteristics compare favorably. Hence, the dynamic model ensures an ade-
quate description of the machine tool prototype under study.

The Problem of the Machine Tool Structure Optimization:
Performance Criteria

The performance criteria characterize the consumption of metal, the static and
dynamic compliances of the structure within the cutting zone, and vibration

2

Figure5=lpnSchematicof acylindricaligrinding machine. 1 Grinding wheel, 2 wheelhead,
3 rear portion of the bed (under the wheelhead), 4 front portion of the bed (under the
table), S table (together with the rotary portion), 6 headstock, 7 tailstock, and 8 workpiece.
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Workpiece axis

infeed K /gﬁ Table axis
direction = el
Grinding wheel
e axts
M

Figure 5-2 Dynamic model of the machine tool structure.

stability of the structure (using the Nyquist criterion). The expressions for the
criteria under consideration (with the exception of the metal consumption) are
based on the dependence of the structure dynamic compliance w(iw) within the
cutting zone.

Ay,
w(iw)=—-}; 8
where P is the variable component of the cutting force; Ay;_g is the relative
displacement of workpiece 8 and grinding wheel 1 along the Y-axis (see Fig.
5-1). Let us compile the performance criteria vector ®=(P,, ®,, ®;, ®,).

1. The metal consumption per machine tool
8
®,=> M;— min.
i=1

2. Static compliance
®,=w,,—o—> min.
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3. Vibration stability of the structure (the Nyquist criterion),
@®;= max(—Re w) — min.
4. Vibration activity within the cutting zone.

®4=max|w|— min
where |w|=+/(Re w)2+(Im w)2.

Criteria @, and ®; are related to the machine tool productivity, and ®, to the
machining accuracy.

Selection of Significant Design Variables

The following design variables were varied: masses, M3 and My, of the two
portions of the machine tool bed (these design variables are denoted by a; and
ap); the axial stiffness of the supports under the wheelhead bed, K3 (or a3); the
axial stiffness of the supports under the table bed, K, (or ay); the stiffness of
the lead screw of the wheelhead feed, K35 (or as); and the interference, (o).
The latter two design variables determine the stiffness characteristics of the 2-3
joint. A specified value of interference was used for determining the wheelhead
guideways stiffnesses K, 3. Six geometrical design variables of the joint 3-4
between the two portions of the bed were also varied. These design variables
were used for calculating linear stiffnesses, K34, K3.4, and K34, and angular
stiffnesses K¥%, K%, and K¥?,. Thus, at the start of the study the design-variable
vector was a=(ay,...,012).

Using the calculated and experimental values of static and dynamic characteris-
tics of the structure, it was found that the most intensive dynamic processes
occur for the fifth, sixth, and seventh modes of vibration within the frequency
range 50-70 Hz.

In line with the technique described in the preceding section, n=32 trials were
conducted in the 12-dimensional parallelepiped. The energy balance was analyzed
for the fifth, sixth, and seventh modes of vibrations. Table 5-2 presents the
results of the analysis for model a’. As we see, the major contributions into the
kinetic energy are due to the masses of the wheelhead M,, the rear portion of
the bed (under the wheelhead) M3, and the front portion of the bed (under the
work table) M,.

The potential energy of vibrations is mainly determined by stiffnesses of joint
2-3, as well as K3 and K,. Similar results were obtained for all the 32 trials.

The results have shown that the set of significant (substantial) design variables
incorporates the first six design variables, a;—ayg, of the total number of 12
design variables. In all trials the contribution of the linear and angular stiffnesses
of joint.3-4 proved.to.be. less.than 5%..(In line with technological conditions,
the wheelhead mass could not be varied.) These results imply that it is advisable
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Table 5-2
Distribution of
Vibration energy
(%)
Natural frequencies
. Design Variables (Hz)
Kind of
Energy Name Designation 59.8 64 68.2
Wheelhead mass M, 31 30 22
Mass of the bed under the M, 38 26 22
Kinetic wheelhead
Mass of the bed under the M, 22 28 36
table
Stiffness of the lead screw K33 25 26 16
for wheelhead feed
Stiffness of the wheelhead K33, K33, K35, KDy, K55 8 11 6
guideways
. Axial stiffness of the K 44 23 40
Potential 3
supports under the
wheelhead bed Ky 14 25 32

Axial stiffness of the
supports under the table
bed

to optimize the structure by the first six design variables only. All other design
variables were assumed to be constant and equal to those of the prototype.

This conclusion concerning the advisability of varying the first six design
variables when optimizing the structure was confirmed by comparing the perfor-
mance criteria calculated for 32 trials in the six- and 12-dimensional parallel-
epipeds. .

Table 5-3 compares the values of ®!2 and ®8; for the five trials, o, o’, a'®,
a?’, and a2, We see that the errors A®);® are insignificant.

The latter were calculated using the formula

12 6
lq)v,i—q)v,i
ot vl

AD)%0=
v,i q)v,i

-100%, v=1,...,4, i=1,...,32.

The boundaries of design variables are presented in Table 5-4. One had to
find the feasible solutions set D and the Pareto optimal set P of the solutions,
and choose the most preferred solution on this set. In all, N=512 trials were
conducted in the six-dimensional parallelepiped. The criteria constraints corres-
ponded to the prototype performance criteria.

Eighteen models, all of them Pareto.optimal, have entered the feasible solutions
set. Table 5-5 presents five of the models.
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Table 5-3
. Numbers of calculation tests (selected)
Design Performance
variables criteria 2 7 18 27 32
P, 5,971 6,346 5,751 6.001 5.876
D, 0.000220  0.000228  0.000240  0.000196  0.000220
G- D, 0.000450  0.000530  0.000540  0.000418  0.000345
D, 0.001060  0.000970  0.001210  0.000731  0.000656
b, 5,971 6,346 5,751 6,001 5,876
o, 0.000215  0.000230  0.000240  0.000196  0.000220
Gt D, 0.000459  0.000545  0.000580  0.000416  0.000345
P, 0.001072  0.000982  0.001230  0.000730  0.000650
AD}%S 0 ] 0 0 0
Error values APLZS 2.2 0.8 0 0 0
AD!I%S ADLZE 1.9 2.7 6.8 0.5 0
A®S 1.1 1.2 1.6 0.1 1.0
Table 5-4
Design Designation Lower Upper
variables o boundary boundary
- M;(t) 1.5 2.0
Masses of two bed portions Ma(0) 1.6 21
. K;(kgf/mm) 20,000 40,000
Supports stiffness Ka(kgf/mm) 30,000 60,000
Stiffness characteristics of K3 3 (kgf/mm) 15,000 40,000
the joint 2-3 interference (mm) 0.003 0.005

We see that all the errors proved to be below the 10%-level specified by the
designer, A<I>‘1,’2i'6s 10%. Hence, the feasible solutions found in the six-dimen-
sional space of design variables have been obtained with a specified accuracy.

Solution a7 has been preferred to all the rest. Tables 5-6 and 5-7 present the
values of the criteria and design variables for both the optimal solution and the
prototype.

For the optimal solution, the performance criteria of the machine tool structure
exceeded the corresponding prototype criteria considerably: by 422 kg in the
consumption of metal, by 18.46% in the static compliance, by a factor of 2.96
in vibration stability, and by a factor of 1.72 in the dynamic compliance of the
structure within the cutting zone.

The analysis of the dynamic characteristics of the structure with the design
variables, corresponding, to. the optimal solution a'”, has shown that the most
vibroactive is the frequency range 75-85 Hz.
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Table 5-5
Design Performance Numbers of feasible models (selected)
variables criteria 17 20 66 260 422
b, 5,752 5,627 5,807 5,598 6,082
e o, 0.000190  0.000207  0.000199  0.000206  0.000193
77 &, 0.000150  0.000150  0.000216  0.000240  0.000228
@, 0.000695  0.000877  0.000691  0.000766  0.000733
@, 5,752 5,627 5,807 5,598 6,082
- ®, 0.000202  0.000210  0.000198  0.000198  0.000184
1772 @, 0.000170  0.000163  0.000230  0.000259  0.000239
, 0.000642  0.000910  0.000668  0.000801  0.000749
ADIZS 0 0 0 0 0
Error values AD}S 5.4 1.4 0.5 4.0 4.8
ADIZS APL%E 8.0 7.9 6.0 7.3 42
AP%E 8.2 3.6 3.4 43 2.1
Table 5-6
Criteria
Models (1) b, (mm/kgf) @3 (mmvkgf) ®,(mm/kgf)
Model 17 5.752 0.000190 0.000153 0.000695
Intial solution (a prototype) 6.174 0.000233 0.000450 0.001200
Table 5-7
Design variables
Models o(t)  ox(t) aszkgf/mm) askgf/mm) astkgf/mm) og(mm)
Model 17 1.766 1.616 384400 439400 39220 0.0045
Intial solution (a prototype) 1.800 2.000 20000 30000 16000 0.0035
Conclusions

The most vibroactive elements of the dynamic model of the cylindrical grinding
machine under consideration have been revealed. The significant design variables
were found, thus allowing reduction in the design-variable space dimensionality
for solving the optimization problem. In turn, this permitted both finding the
optimal design variables, which ensure the best values of the structure perfor-
mance criteria.as.compared. with. the prototype, and reduction in the time needed
to solve the optimization problem.
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5-4. Weakly Coupled Oscillatory Systems

In this section, we present an approach that can be used both for determining
the sensitivity of the criteria with respect to parameters of systems and for
decoupling the systems (Banach 1988). When using this approach, we seek the
parameters responsible for weak interaction between subsystems. Such parame-
ters can be omitted, and then we obtain the system whose order is less than the
order of the original system. Note that, provided certain conditions are fulfilled,
the difference between the solution of the reduced-order system and the original
system does not exceed a prescribed quantity €, and in many cases we can
guarantee sufficient proximity between the criteria values of the original and
modified systems.

The Method of Finding Weak Couplings

The equations of a complex system that consists of a number of subsystems can
be written in the form Dx=0, where D is a matrix of symmetric block-type
structure whose blocks have the form K;—AM;;:

D=K-AM=[K;—\M;], i,j=T,m, (5-24)

Here, K is the system stiffness matrix whose elements are k;j; M is the inertia
matrix; diagonal blocks K;; and M;; are the stiffness and inertia matrices of the
ith subsystem; off-diagonal blocks K;; and M;; describe the stiffness and inertia
coupling between the ith and jth subsystems; m is the number of the subsystems.

Let us call a subsystem, which is obtained after rigidly fixing the remaining
m—1 subsystems, a partial subsystem. Then it is evident that each diagonal block
of the matrix D describes a certain partial subsystem, whereas off-diagonal blocks
reflect the interaction between subsystems.

Suppose now that we know the natural frequency spectrum and natural
oscillation shapes for each of the partial subsystems. Then for each of the
subsystems, the following matrices can be formed: the diagonal matrix
A;=diag [N?], p=1,n;, consisting of the natural frequencies of the ith subsystem,
and the matrix ®; whose columns @7 represent the shapes of oscillations of the
ith subsystem (n; is the order of the ith subsystem.)

Let us find the conditions under which system (5-24) is weakly coupled. Let
us form the block-diagonal matrix ®y consisting of blocks ®;, and diagonal
matrix Ay consisting of the blocks A;. It is evident, that these matrices describe
the subsystems that are not coupled with each other.

Let us premultiply the matrix D (see 5-24)) by ®§ and postmultiply by ®,
(the superscript T marks the transposed matrix). Then we obtain the symmetric
block matrix

D*=®{D®,=[®! (K,—\M,)®,] (5-25)
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Since ®; describes the natural oscillation shapes of the ith subsystem, the
blocks of matrix (5-25) arranged on the main diagonal have the diagonal form.
Let us introduce the following notation:

O/M;®;=diag [Wf]1=p; (5-26)
@K, ®;=diag [2?]=2; (5-27)
&=\ w? (5-28)

Taking into account (5-26)—(5-28) we can represent the diagonal blocks of (5-
25) as follows:

@] (Kii—AM;)®@; =, — A p; (5-29)

In order for matrix D* to describe weakly coupled subsystems, it is necessary
to represent it as a matrix containing a small parameter e<€1 at off-diagonal
blocks, that is (taking into account (5-29))

D*=diag [2;,—Ap;]+€B,

Be [ oo (5-30)

Then, following the perturbation theory (Kato 1966) we can represent the
solution of the eigenvalue problem for matrix (5-30) as series expansions in
powers of e€:

A=Agt+eA A+EAA+. .,
®=¢0+€®Os+€2‘p0’r+... (5-31)
Here Ag and @ are the previously defined matrices representing the natural
frequencies and shapes of natural oscillations of partial subsystems, and the matrix
coefficients of € describe correcting terms of the first and higher approximations; S
is the matrix of spectral coupling coefficients S’ (see (5-37) below); and T
characterizes second-order corrections to the eigenvectors. Some issues regarding
the convergence of series like (5-31) are considered in (Kato (1966) and Dol’berg
and Jasnitskaya (1973).

Matrix (5-25) can be reduced to the form (5-30) by different ways, and
depending on this, we can obtain different types of weak couplings. In Banach
and Perminov (1972), it is shown that the reduction can be done by premultiplying
and postmultiplying matrix (5-25) by the diagonal matrix N=diag [(2?)"/%]. This
results in, the matrix, D**=ND*N_whose diagonal elements are given by
1—Apf/2?, and off-diagonal blocks @;; consist of the elements
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o =[DF(K;;—\M;) ®]] (xe)~ " (5-32)
Taking into account (5-28) we can rewrite (5-32) as follows:
o =[®FT(K;~AMp P10 X)) ™12 ()~ (5-33)
Weak Energy Coupling

Let us estimate the values of of’. Note first, that |of| < 1, by virtue of positive
definiteness of the matrices K and M.
The necessary condition of the system being weakly coupled is given by

loff|<e<1, p=1,n;, s=1,n; (5-39)

Indeed, if (5-34) holds, the matrix D** can be represented in the form (5-30),
D** = Dy + €D, which describes weakly coupled systems.

Inequality (5-34) means that for pth and sth oscillations modes, the work of
the elastic forces acting between the ith and jth subsystems is much less than the
geometric mean of the potential energies of the ith (V;;) and jth (V) subsystems:

Vi< (VEVHY? (5-35)

In case there exist inertia elements M;; in the coupling matrix, we can obtain a
similar condition for the kinetic energy:

W< (WEW )Y (5-36)

Therefore, conditions (5-35) and (5-36) can be called conditions of weak energy
coupling. Superscripts p and s indicate the respective numbers of oscillation
modes.

As mentioned before, if (5-34) holds, the matrix D* has the form (5-30) that
is, K=Kq+€eB, M=Mj+eL, where blocks of the matrix are given by B;=0,
Bij=fl),-TKij(I>j. Analogously, we can obtain blocks of the matrix L.

One can seek the solution of the eigenvalue problem for matrix (5-25) in the
form of series (5-31). Using the procedure given in Banach and Perminov (1972)
we obtain first-order corrections (in the case of simple roots) for natural frequen-
cies and oscillation shapes of the ith subsystem taking into account its coupling
with the jth subsystem:

(AA);=0, SF=af NN — N)™! (5-37)

If the.ith subsystem.is-coupled.with.several subsystems, the resultant correction
is found by adding corrections (5-37).
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Weak Spectral Coupling

Analyzing the first-order and higher-order corrections we see that these correc-
tions contain the matrix S=[$%'], given by (5-37), as a multiplier. Consequently,
the values of % determine the radius and rate of convergence of series (5-31).
If |S%°|>1, then the series diverge.

Suppose, condition (5-34) of weak energy coupling is satisfied. However, as
it follows from (5-34) and (5-37), in case |1—()\}/)\’,~’)|<e the inequality
|S2>1 implying the divergence of series in (5-31) can hold. This inequality
means that different subsystems have close natural frequencies. In this case, as
in Banakh and Perminov (1972), the system can turn out to be strongly coupled.
It is evident that the satisfaction of the condition

|52°|=1o2 N2 (A —MD) Y| <e (5-38)

is sufficient for the convergence of series (5-31). If the condition (5-38) is
satisfied, we say that there is weak spectral coupling between the ith and jth
subsystems.

The condition of weak spectral coupling can be fulfilled in the following two
cases: (1) When there is weak energy coupling between subsystems (|of’| <€),
and there are no close frequencies in the subsystems, that is, [1—=(\J/AD)|~ 1;
and (2) when the amount off resonance between subsystems is large, that is,
|1—(\J/\?)|=1/e. In the latter case, the weak energy coupling between subsystems
is not necessary. This means weak coupling between the subsystems operating
in different frequency ranges. Note that the condition of weak energy coupling
alone is applicable only if the subsystems do not contain close frequencies.
Otherwise, one can also check the convergence condition, |S%'| < 1.

Separation of Weakly Coupled Subsystems in the General System

The decomposition of the system taking account of weak energy and spectral
coupling allows us to reduce considerably the order of the examined system. If
the solutions of eigenfrequency problems for the subsystems are known, one can
construct the matrix o; and estimate the degree of coupling between oscillation
modes.

For the majority of practical problems, the order of the subsystems is very
large (10°-10%), and it is difficult to obtain all necessary information about
frequencies and shapes of oscillations. Therefore, to use effectively the weakness
of couplings, we are to be able to estimate the quantities o’ approximately,
without having a complete solution of the eigenvalue problems. Let us prove an
important property of the energy couplings, namely that maximal matrix elements
af}s decrease-with-mode-numbers-(p-and.s) increasing and, under certain condi-
tions, remain less than a prescribed number ¢, i.e.,
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max a}jl =...= max alf}”i, p=L,n;, s=1,n;. (5-39)

For the proof, we simplify expressions (5-32) and (5-33) by using vector and
matrix norms (Parlett 1980). Then the existence condition for weak energy
coupling takes the form

|| @7 K@ ||
((Iyi’TKiiq)zp) 172 ((I)}vTK”d)}s) 172

oK Q|
(= =)'

i

(5-40)

where Q is determined from the orthogonality condition for the oscillation shapes:
®/Q®, = E. In particular, for rather widespread orthogonality conditions, with
respect to energy (1/2 A\DPM,;®; = E) and with respect to the inertia matrix
(®'M,;®, = E), expression (5-40) takes the form

lol= MG 2T KM V2 [ O A~ (5-41)

Numerators in (5-40) and (5-41) do not depend on the solution and are determined
by the elements of original matrices K and M. Hence, the change of o with
numbers p and s increasing is determined by the values of A} and M/, from where
relationships (5-39) follow immediately.

Now, we prove the second part of the statement. Let us choose the partition
of the system into subsystems connected by weak energy couplings so that the
inequalities

1Q7 2 KyQi™ V2 || (pf1 ) ™2 <eIN) 712 (5-42)

hold. Then |off|<e for p>p;, s>s;. This completes the proof.

Condition (5-42) used for estimating max o’ does not require the knowledge
of higher frequencies and shapes of oscillations. Besides, from (5-42), we can
determine frequencies M? in order to provide the calculation accuracy equal to e.

Thus, we can propose the following way for seeking weak energy couplings
in a complex system. First, the system is partitioned into subsystems. Then,
after having obtained natural frequencies and oscillation shapes for decoupled
subsystems, we find from (5-42) the numbers p; and s, of the oscillation modes
in the ith and jth subsystems connected by the weak energy coupling.

Hence, relationship (5-42) enables us to estimate the strength of energy cou-
plings.and.is.the existence criterion for.weak energy couplings. In addition, this
relationship determines the way of partitioning the system into weakly coupled
subsystems.



Determination of Significant Design Variables | 151

Example (Banach 1988)

Consider the use of concepts of energy and spectral couplings for the analysis
of free oscillations of a rotor mounted on an elastic foundation (see Fig. 5-3).

The foundation is considered to be consisting of beams with constant square-
shaped cross section, the length of the square side being equal to 0.43 m. The
lengths of longitudinal and transverse beams of the foundation are equal to
Ly1=5 m and L,=3 m, respectively. The rotor is modeled as a beam of circular
cross section. The length of the rotor is L,=5 m, and the radius of its cross
section is r,=0.6 m. The finite element model of the system has been studied
within the frequency range 0—100 Hz. The model has 12 elements. Each of the
elements has six degrees of freedom, and hence, the total number of degrees of
freedom is 72. The finite elements are numbered as shown in Figure 5-3.

The stiffness matrix of the system is given by

KK
K= K;TI{
Z
Y
X 12
11N/ 7 4
?
10
A
3
4)

Figure 5-3  Rotor on an elastic foundation.
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where Ky and K, are stiffness matrices of the foundation and rotor, respectively;
and K, is the stiffness matrix of elastic elements connecting the rotor and
foundation. The 42X30-matrix Ky has a block structure, with the blocks K}fr
(i=1,...,7; j=8,...,12). Only the 6x6-blocks K3:3=K%'°=K.'? are not equal
to zero, nonzero elements of these blocks are kjj=ky=ks3=— 10°N/m,
k1s=—kps=—34.3-10°N/m. The first four natural frequencies for decoupled sub-
systems are 7.65, 8.36, 21.86, 39.8 Hz for the rotor, and 22.2, 25.76, 29.0,
79.8 Hz for the foundation. The oscillation shapes corresponding to these fre-
quencies are @ and <I>} (i=1,...,4). Having calculated the matrix
D*=d>f (K—AM)®,, according to (5-33), we find max a§‘=a3-4=0.11, max
$5°=0.04 (w;=p;=50). Hence, within the chosen frequency range, the system
is weakly coupled, both in terms of energy and spectral coupling. For unknown
oscillation modes with p, s>4, we can estimate «; by using (5-41). In the case in
question, when \;, \;>2m-80Hz, we find that |o;] = ||[M/"? K M|
-()\i)\jpipj)_” 2 =0.2. Taking into account (5-42) we conclude that the system
is weakly coupled (in terms of energy coupling) within the whole frequency
range and, hence, natural frequencies of the coupled system are close to the
corresponding frequencies of the isolated subsystems. The calculations of natural
frequencies confirm this conclusion.

The natural frequencies of the coupled system are 7.13, 7.96, 20.55, 22.8,
26.1, 29.4, 38.5, and 80.7 Hz.

The corrections for these frequencies do not exceed 6%, the frequencies of
both the rotor and foundation sliding apart (the lesser frequencies decrease while
the greater ones increase, approximately by the same amount) so that

2Nir + 2 N = 2\, (it follows from the Vi’ete theorem). The dynamic character-

istics of subsystems obtained after partitioning the original system due to weak
couplings are close to the respective characteristics of the original system.
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Examples of Multicriteria Optimization of
Machines and Other Complex Systems

At present, the parameter space investigation (PSI) method is widely used in
various areas, such as pharmacy, petrophysics, nuclear physics, chemistry of
polymers, geophysics, and nonlinear optics. However, of primary importance
is its use in shipbuilding, machine tools, aircraft, railway cars, automobiles
manufacture, etc. In this chapter we discuss some examples of effective applica-
tions of the method.

6-1. Vibration Machines Optimization

Resonant Table Vibrator Design (Sobol’ and Statnikov 1981;
Kryukov et al. 1980)

Resonant vibration machines are used in various industrial branches. They are
created on the basis of nonlinear elastic systems ensuring their technological
stability and allowing optimization of the laws of working parts vibration. Synthe-
sis of vibration machines is a rather complicated problem, generally reducible
to determination of the optimal dynamic structure and selection of the nonlinear
system and drive parameters so as periodic motions of the working parts satisfy
both the specifications and a number of design constraints in the best possible
way.

Initial data
As the prototype of the vibration machine we have chosen a table vibrator
used for moulding reinforced concrete products, whose load-carrying capacity

is 8 t (Fig. 6-1). Its vibration is described by the following system of nonlinear
differential equations;

153
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Figure 61 Schematic of an asymmetric resonant table vibrator.

mlji:] +j(x)5c+ }Lk 3}&1 +P(X)+ k3xl =
kop (sinv t+ pvcosve)
m2)'c'2 _ﬂx))é+ }Lsz(z—P(x) + kz)Cz =
—kop (sinv ¢+ pvcosvt),

(6-1)

where x; and x; are the displacements of masses mg and m, respectively; x=x; —x2,
P(x)=(k; +ko)x+ o (x)kg(x+e), fx)=plk1+ko+o(x)kg], o(x)=0 for x=e, and
a(x)=1 for x<e. The physical meaning of the quantities appearing in (6-1)
follows.

Design variables

There are 10 design variables: stiffness of the driver elastic links, a;=ko
(measured in kN/cm); stiffness of the main linear elastic links, ar=k; (kN/cm),
the buffers stiffness, a3=kg (kN/cm); stiffness of shock absorbers of the supports
mounted under the frame, as=k, (kN/cm); stiffness of shock absorbers of the
supports mounted under the working part, as=k3 (kN/cm); drive eccentricity,
ae=p (cm); mass of the working part, a7=my (t); balancing frame mass, ag=m;
(t); initial clearance in buffers in the absence of technological loads, ag=e;,
(cm); operational frequency, ao=v(s"h.

The other quantities
The remaining quantities are: payload mass, m,; coefficient of the payload

mass-additionyk; reduced:massof theworking part of the system, m; =mg+k,,mp;
coefficient of internal resistance of the rubber elastic links, p; reduced resistance
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coefficient, k,; reduced coefficient of internal resistance forces, p;=pn+k,my;
and buffers clearance, e.

The request for proposal specifies the product mass (2 t=m,=38 t), the opera-
tional frequency range (50 s !=p=100 s7!), and the maximum upward and
downward accelerations of the working part w;, and w;,. Operational modes
must correspond to the ascending branch of the frequency characteristic, that is,
must belong to the subresonance region.

Approximate periodic solutions to system (6-1) were found using the Krylov-
Bogolyubov method.

The following functional dependences are introduced:

fi(@)=wyy, H{@)=w4, f3(e)=kop,
fa(a)=mo+M—(ky+k3) Q(gk") ™",
fs(@)=mo+my+M—(kp+k3)Q(gk") ",
f (a)zkzMg—kop(k2+k3) e
6 kiky+hiks+hoky O
fHla)=v—o(a)

where M is the maximum load (equal to 8 t); k' is the stiffness of a rubber shock
absorber (measured in kN/cm); Q is the limiting load per shock absorber (kN);
and w(a) is the linearized system’s natural frequency s™h.

Functions fi(«), f>(«), and f7(at) depend on the solution to system (6-1), while
f3(a)fe() are expressed directly via a,...,00.

The functional constraints are specified by the inequalities

9=fi(a) =22, 40=f(a)=100, f3(a)=120 (6-2)

and
JS‘(O‘)SO, j=4,...,7. (6-3)

The first two constraints ensure that the vibration of the working part corre-
sponds to the design requirements; the third constraint limits the disturbing force;
the fourth and the fifth ones limit the loads acting on the rubber shock absorbers;
the sixth constraint is related to the load on the elastic suspension; and the
seventh one ensures that the operational modes under consideration stay within
the subresonance region.

The constraints imposed on fy, f>, and f3, are not “rigid,” and may be varied
depending on the specific features of manufacture and the requirements to the
reinforced concrete productsz Converselys the constraints imposed on f4—f; cannot
be violated.
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Performance criteria

It is proposed to estimate the quality of the table vibrator using six criteria,
all of which should be minimized. The first criterion (the mass of the machine)
®,=0;+ag. The other five criteria are expressed through the solution to system
(6-1), which depends on the product mass m,,. In line with the technique proposed
in Kryukov et al. (1980), system (6-1) was solved four times for m,=2, 4, 6,
and 8 t. The max and min symbols employed in the subsequent formulas indicate
that either the maximum or the minimum values obtained in the four series of
calculations are used. Thus, we have the following performance criteria:

* The mass of the machine ®;(a)=mg+ms,.

* The asymmetry of the law of the working part vibration, ®,(a)
=max(wy,/wiq).

* The dynamic force acting in the drive, ®;(a)=max(kgag), where aq is
the elastic deformation of driving links.

* The dynamic loads acting on the foundation, ®,(et)=max || kya;|— |kya || ,
where a; and a, are the vibration amplitudes of the working part and the
balancing frame, respectively.

* The stability characteristics of the upward and downward accelerations,
®5(a)=(maxwy,/minwy,)~1 and Pg(a)=(maxw,/minw,,)—1 respec-
tively.

Problem 1: Analysis of the Potential for Modernizing the
Initial Vibration Machine

We have to answer the question of whether comparatively small variations in
the parameters of the existing vibration machine allow improvement without a
cardinal change in the design.

To solve the problem the designer has indicated the boundaries of the design
variable variation presented in Table 6-1. These boundaries define a nine-dimen-
sional parallelepiped 1, whose center coincides with point a! representing the
existing machine parameters (see Table 6-1). The criteria constraints were set
equal to the values of the criteria at point al, that is, ®**=d (a!) for any
v=1,...,6.

Trial calculation and correction of the problem formulation

In parallelepiped II;, N=256 trials were conducted, subject to functional
constraints (6-2) and (6-3). The number of models satisfying the functional
constraints proved to be equal to N'=24, so that y=0.093. Since the first three
functional constraintsywere:notirigid;y functional dependences fi, f>, and f; were
converted into pseudocriteria. Thus, we have
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Table 6-1

Problem 1 Problem 2
a; o a,l» a¥* a,z-“S ujm a¥ a¥* a}ls a}z
1 44 48 52 44.96 50.98 20 100 31.79 48.78
2 92 96 100 99.03 99.42 30 150 59.04 83.12
3 1,400 1,600 1,800 1,758 1,490 400 3,000 1,449 2,396
4 20 25 30 22.07 20.09 20 60 20.42 20.00
5 20 25 30 29.49 26.54 20 60 48.64 46.87
6 0.5 0.7 0.9 0.848  0.830 0.5 2.0 0.971 1.065
7 3 3 3 3 3 3 7 3 3
8 3 5 7 4.02 543 3 7 3 3
9 0.0 0.2 0.4 0.398 0.110 -0.3 1.5 0.438 0.637
10 94 97 100 95.10 94.20 50 100 91.48 90.63

r=fi(a), Pg=fi(@), Do=fr(ax). (6-4)

The second trial calculation

Again N=256 trials were conducted, 33 of which were included in the test
tables. Models a*’ and a®*® proved to be advantageous, since they surpass
a! in several important design variables, and this compensates for a certain
deterioration in the rest criteria. Both models found their way into the test table
solely due to transformation of functional dependences into pseudocriteria (6-
4). The designer has decided that model a**® was the most promising one (see
Table 6-2).

Subsequently, the designer has tried to minimize criterion ®;.

Continuation of the calculations

The trials were continued, subject to constraints (6-3), within the same parallel-
epiped I, for N=1,024. As a result, 108 models entered region G. At this stage,
no criteria constraints were imposed. From among the 108 models included in
the test tables, the Pareto optimal ones were selected. Taking into account all
six criteria, there proved to be 59 such models, model a! included. Hence, the
prototype (model ') could not be improved in all six criteria simultaneously.
In a certain sense, this conclusion should be considered natural because the
design subjected to analysis was very good. Subsequently, the designer has
considered seven sets of criteria constraints of which three are described here.

The first designer-computer dialogue. Table 6-2 presents the trial data for
all the performance criteria with the exclusion of pseudocriteria. The criteria
constraintsymarkedsbyshorizontalilinesydefine the feasible solutions set D con-
taining only one solution represented by model a'.
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Table 6-2

i P i D) i d;5(ah i D) i dg) i Dy(ah)
248  7.02 445 0233 319 2825 475 370 588 0.047 214 0.051
353 7.04 475 0241 248 28.34 1,022 374 418 0.106 295 0.120
132 7.17 141 0241 794 2846 957 410 910 0.133 853  0.120
673  7.30 40 0.241 47 2894 593 415 863 0.144 910 0.122
47 731 78 0.242 935 2938 253 437 214 0.155 231 0.130
528  7.32 831 0.242 176 29.52 768  4.52 134 0.170 807  0.163
905  7.37 183 0.243 498 29.59 143 455 853 0.176 819 0.177
733 7.39 667 0.243 13 30.15 643  4.62 295 0.180 445 0.183
379 7.41 925 0.243 40 30.34 116 4.66 637 0.197 40 0.186
836  7.42 433 0.243 528 3062 204 477 947 0214 116 0.188
141 7.42 655 0.244 922 30.82 588 491 347 0233 637 0.214
690  7.43 396 0245 475 30.94 552 4.93 396 0.236 588  0.217
620 7.47 319 0.246 905 31.62 176  5.16 203 0.243 406 0.221
421 7.49 913 0.246 682 3168 733 520 231 0.256 475 0.227
922 7.50 819 0248 141 31.69 667 527 925 0.256 790  0.243
498  7.52 682 0248 819 31.70 661 542 406 0.256 655 0.245
787  7.57 794 0.248 1 3172 379 543 116 0271 362  0.260
218  7.58 498 0249 1,022 31.83 224 554 819 0.281 203  0.266
78 7.59 176 0.250 831 32.00 368 563 619 0.283 36 0.266
181 7.61 935 0.250 433 3241 619 568 153 0294 619 0.274
552 7.63 619 0.250 421 32.54 406 5.69 913  0.298 78  0.279
990  7.65 134 0252 379 3280 433 570 648 0.298 224  0.281
319 770 922 0252 445 33.62 794 577 807 0.303 149 0.282
768  7.70 615 0.252 181 33.95 682 578 224 0.303 667 0.285
336  7.73 879 0252 368 34.77 533  5.81 40 0305 48  0.286
879  7.73 115 0.255 353 34.79 13 581 445 0305 628 0.286
13 775 1 0256 218 3501 408 587 628 0.310 925 0.287
831 776 243 0.256 787 3506 874 589 183 0.316 418  0.294
605 779 600 0258 874 35.18 498 592 520 0.322 706 0.304
153 7.80 996 0260 643 3534 859 596 996 0.335 615 0.306
40  7.81 143 0.261 768 3564 637 596 862 0.336 847 0.313
293 7.82 103 0.261 688 3570 913  5.97 78  0.342 1,022  0.313
794  7.82 643 0262 836 3575 922 6.03 115 0.343 347 0.315
643  7.86 368 0.262 341 3643 293  6.13 48 0.346 513 0.324
433  7.87 874 0262 847 36.43 787  6.18 1,022 0352 336 0.332

continued

The second designer-computer dialogue. Having decided to make conces-
sions in the less important criteria ®5 and @, the designer chose ®¥*=1 and
®¥*=1, while the first four criteria remained unaltered: ®**=® (a'), 1 =v=<4.

In this case three models, o', &, and &%, were included in the feasible
solutions set. The latter two solutions were assumed to be approximately
equivalent, since the best value of ®;(a°*?) was balanced by the best values
of ®3(a’*yand @(a’**) Itisnoteworthy that model o' proved to be improv-
able in the four most important criteria.
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Table 6-2 (Continued)
i Be) i D)) i D) i D) i O i Dg(a))

910 7.87 13 0262 253 36.62 879 6.25 667 0.354 880 0.339
952 7.93 163 0.263 132 36.67 248 6.36 475 0357 1 0.359

192 7.95 661 0.263 879 36.69 935 6.37 86 0.366 115  0.360
767 7.96 990 0.263 224 37.06 615 6.53 790  0.374 408  0.380
619 7.97 421 0.263 192 37.18 295 6.62 149 0375 688  0.383
418 7.99 853 0.264 103  38.11 243 6.67 513 0.385 668  0.390
925 8.00 347 0.264 655 38.20 1 6.70 615 0385 85 0.393

1 8.00 293 0.265 143 3844 690 6.82 706 0.386 600  0.402

819 8.01 204 0.265 78 38.85 319 6.82 655 0.395 957 0.431
593 8.04 48 0.265 243 39.08 905 6.90 336 0.399 103 0.432
149 8.05 224 0.266 185 39.15 78 7.01 847  0.400 368 0.451
682 8.05 149 0.266 733 39.27 218 7.03 600 0.417 293  0.463
408 8.05 203 0.266 406 39.57 47 7.08 85 0.420 948 0.474
935 8.06 787 0.267 990 39.63 790 7.16 1 0.421 183  0.481

36 8.06 520 0.267 513 39.82 853 7.17 668 0.439 836  0.485
790 8.07 253 0.268 593 40.05 48 7.17 880 0.441 253 0.486

214 8.33 673 0.276 605 45.84 421 851 831 0.649 243  0.626
475 8.34 231 0.276 948 4591 353 8.55 767  0.687 947  0.660
996 8.34 690 0.276 790 46.01 528 8.63 859 0.687 176  0.665
637 8.35 768 0.277 35 46.30 990 8.71 421  0.696 682 0.719

35 8.56 767 0.282 153 50.85 362 9.44 353 0.844 528 0.891
183 8.61 248 0.283 859 52.01 153 9.59 218  0.849 768  0.894
648 8.61 593 0.283 418 5435 170 9.59 733 0.881 733  0.897
807 8.64 952 0.284 957 5473 880 9.64 787 0.886 913  0.903

347 8.98 605 0.305 231 64.18 35 11.82 13 1.118 498 1.164
863 9.04 620 0.313 947 7062 600 1251 498 1.143 13 1.222

The third designer-computer dialogue. The designer has decided to look for
the models that are somewhat worse than «! in one of the first four criteria,
being at the same time notably better in all other criteria. To do this he has
chosen the constraints

Ore=P,(a*®)=8.34, O*=d,a**%=0.291,

O3 =P,(a**)=33.62, D=0, (a®")=7.61.

As defined earlier, ®¥*=1 and P¥*=1.
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The feasible solutions set contain 15 models of which 12 are Pareto optimal.
Of the latter, the designer has preferred models @®*®, &>, and a°%2.

The most intriguing proved to be model o*"3, which is somewhat worse than
a! in criterion ®;, but surpasses it in criteria ®,—®¢. The value of O4a*?) is
minimal and much better than ®4(a!). The designer’s ideas related to model
o*7 are summarized in the conclusions.

Subsequent designer-computer dialogues did not result in substantial improve-
ments. Attempts to improve model &*’> by means of a local search in its neighbor-
hood proved to be fruitless.

The issue of model o*" stability also was analyzed. In doing so it was supposed
that the model is stable if the parallelepiped whose center coincides with point
a*”> and edges correspond to technological tolerances of the design variables
does not contain points with corresponding performance criteria substantially
differing from ®,(a*’®). Within this parallelepiped, 64 trials were conducted in

which criteria proved to be close to d (7).
Analysis of the criteria relations

The correlation coefficients of the criteria were calculated in region G con-
taining 108 trial points. The results presented in Table 6-3 show that of the six
criteria only ®s and ®g are strongly interdependent, the correlation coefficient
rs ¢ being equal to 0.89. The analysis of the test tables has confirmed the conclu-
sion that the groups of the best (and worst) models with respect to both the
performance criteria consist mostly of the same models.

Table 6-3
v 1 2 3 4 5 6
18

1 1 -0.14 0.60 0.00 -0.63 -0.56
2 —0.14 1 0.24 0.05 0.17 0.14
3 0.60 0.24 1 0.32 ~0.64 -0.47
4 0.00 0.05 0.32 1 -0.32 -0.24
5 -0.63 0.17 -0.64 ~0.32 1 0.89
6 -0.56 0.14 -0.47 —-0.24 0.89 1

The results of solving Problem 1 can be summed up as follows.

1. The prototype machine (model ') cannot be improved in all six criteria
simultaneously. However, models o’* and &?? surpass it in four of
the most important criteria, ®1—®;.

2. An advantageous model, a248, has been found, which is optimal in
criterion @y Its-mass-is-less-than that of model &' by approximately
1t, and the rest of the criteria are acceptable in the designer’s opinion.
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3. Model a*° optimal in criterion ®,, was found. Though its mass is larger
than that of the prototype by 0.34 t, it surpasses the latter in the remaining
five criteria. For the newly found model the dynamic load on the founda-
tion (criterion @,) is almost twice as small as for the prototype! Since
the newly designed plants, and the more so, advanced plants of the future,
are supposed to be multistory buildings with vibrator tables installed not
only on the ground floor but on the upper floors too, a reduction in the
foundation load (criterion ®,) acquires major significance.

At this point we would like to stress the usefulness of multicriteria
analysis once again: At the start of the analysis criterion ®; was assumed
to be undoubtedly one of the most important criteria. However, it is
absolutely clear that within the framework of the single-criterion problem
of the criterion @, optimization we would fail to find the advantageous

o*” solution.

4. Generally, in the case of the previous design variable variations the
possibilities of improving the prototype machine design are rather scarce.

Problem 2: Predesign of the Minimal-Mass Machine

It is necessary to improve criterion ®, (the machine mass) considerably, improv-
ing at the same time, if possible, the values of the rest criteria. Since, according
to the previous analysis the problem is not solvable within parallelepiped 11;, it
was decided to widen the region of search drastically.

Global analysis

The designer has constructed a new parallelepiped I, using design-variable
constraints a¥ and a}* presented in Table 6-1. The limits of a; and ag in II,
have been determined from the dynamic strength conditions, as in II;.

Under the initial functional constraints N=4,096 trials were conducted in II,,
of which only N'=100 trials were included into the test table. Hence,
N'/N=0.025. The reduction (as compared with y=0.093 in the case of the first
problem) is quite natural, since the preceding search was carried out over a rather
limited volume.

Six designer-computer dialogues have been conducted, with the number of
models entering the feasible solutions set varying from zero to 20. Upon analyzing
all 100 models it was decided to continue analysis not in the whole of the
parallelepiped, but in a certain portion of it.

Local analysis

The designer has selected the seven best models and constructed parallelepipeds
centered-in-them: The-local-search-was-carried out within these parallelepipeds.
Two best models were found, having minimum mass 6 t (®,=6 t) and acceptable
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values of all other criteria, namely, model a''® found in the neighborhood of
model a!***2, and model a'? in the neighborhood of o*>4% (see Table 6-1).

Conclusion

The results of these calculations have been regarded by the designer as most
promising. First, it was found that the mass of the machine can be reduced by
2 t, with the forces acting in the drive and the dynamic loads on the foundation
being reduced by 10% to 20% (models a''® and &'? in I,). Second, it was shown
that the reduction in the dynamic loads on the foundation may be accompanied by
improvements in the rest of the criteria, if the machine mass is increased by less
than 5% (model &*” in II,).

These results have stimulated further improvements in the designs of resonant
table vibrators used for moulding reinforced concrete products.

More Examples of Vibration Machine Optimization

Both the degree of perfection of vibration machines and their correspondence to
the state of the art depend on how well they comply with numerous, often
conflicting, requirements, such as small material consumption combined with
high reliability and operability of the machine, small overall dimensions, high
strength, operational stability, high efficiency, and ecological safety.

In Spivakov and Goncharevich (1983) the reader will find numerous interesting
examples of multicriteria design of vibration-impact installations for handling ore,
eccentric-drive vibration conveyers, double-screw crashers, and other vibration
machines.

6-2. Truck Frame Design

As the major structure of a truck, a frame is subjected to the influences of both
the road roughness and the units mounted on the truck itself. In turn, the properties
of a frame strongly affect many significant characteristics of a truck, such as its
controllability, smoothness of motion, vibration loads, stability, etc. Besides,
the mass of a frame makes up a considerable portion of the overall mass of a
truck.

A frame is designed subject to conflicting requirements: One has to decrease
its mass, enhancing at the same time its strength and ensuring the specified level
of a number of operational characteristics (Velikhov et al. 1986).

Here, the problem of designing an optimal truck frame is considered, formu-
lated as follows: It is necessary to design a frame whose mass is smaller than
that of the prototype, and the strength properties are improved as compared with
the-latter--Besides;sthestiffnessscharacteristics of the optimal frame must be
close to those of the prototype whose dynamic properties are sufficiently high.
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Figure 6-2 Finite element model of a truck frame.

Finite Element Model of a Truck Frame

Figure 6-2 shows a model composed of platelike elements possessing both the
membrane and the flexural stiffness. By using these elements one can take into
account the effects of stiffened torsion in the joints of a frame and in the zones
where the cross pieces are fastened to the side rail in the most natural way, and
analyze the stressed state of the structure under study in sufficient detail.

The adequacy of the model was confirmed by numerous bench and road tests.
The calculated and experimental results were compared for the major loading
modes resulting in torsion and bending in the vertical and horizontal planes. The
loading modes were chosen taking into account the statistics of truck frame
failures. The model allows estimating a stress-strained state taking into account
the specific features of interaction of the frame’s elements.'> It proved to be
highly efficient in determining the dynamic characteristics of a truck.

Optimization Criteria

In line with the objective of the study, seven criteria incorporating three
pseudocriteria and four performance criteria were formulated. The torsional stiff-
ness of a frame may be characterized by the overall twist angle ¢. Since we are
exploring the departures of the stiffness design variables of a frame subjected

!5Later we had an opportunity to analyze a simplified model composed of beams. The comparison
of the results calculated using the two models (as well as the comparison with experimental data)
has shown that the beam model yields adequate results regarding displacements and stress distribu-
tions: The use of the' beam model'has allowed considerable reduction in time needed for conducting
optimization calculation.
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to optimization, from those of the prototype frame, the first pseudocriterion was
represented in the form

100%
‘Px(a)=(¢i—¢p)'T
4

where &; is the ith test twist angle (in the case of the PSI method i=1,...,N),
and ¢, is the prototype frame twist angle. The vertical-plane bending stiffness
is characterized by the pseudocriterion

. 100%
()= (finax, v—fihax, v) I :

where f,,i,ax, v and f£,, v are the maximum vertical-plane deflections for the ith
test and the prototype frame, respectively. The horizontal-plane flexural rigidity
of a frame was taken into account using the pseudocriterion

. 100%
D3(0)=(finax, H—fihax, ) P ;
max,

where f,,‘;ax’ g andfh,, p are the maximum horizontal-plane deflections for the
ith test and the prototype frame respectively.

The performance criterion ®4(at) representing the side rail mass is defined as
a sum of the web and the upper and lower flanges masses; and ®s(a) is the
sheet thickness. The latter criterion is also a design variable. Besides,

Pg()=(max oyor) (%5 and ®7(a)=max opy

where max o, and max o, are the maximum torsional and horizontal-bending
stresses, respectively. The torsional stress was normalized by the twist angle 5°,
which is known to be the average twist angle in moving over a road. This was
done by introducing the coefficient ¢s./d; where ds.=5°.

Design Variables

For solving the formulated problem, 21 design variables were chosen defining
both the side rail geometry (see Fig. 6-3) and the cross piece rigidities (Table
6-4). Of special importance is thickness D of a sheet used for manufacturing the
side rail. This design variable determines the latter’s mass as well as rigidity
characteristics and stresses. The geometry of a side rail is defined by a set of
design variables (see Fig. 6-3). By H, B, and L we denote the height, width,
and length.of the side rail portions; respectively. The frame stiffness characteris-
tics display a marked dependence on the torsional and vertical-bending stiffnesses
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Figure 6-3 Side rail geometry (1 is a web; 2 is a flange).

of cross pieces. Therefore, the latter were included into the set of design variables:
IT; and IW; are cross-section moments of inertia corresponding to the torsional
and the horizontal-plane stiffnesses of cross pieces, respectively. Here i=1,...,5,
since the frame under consideration incorporates five cross pieces.

The boundaries of the design variables (the II; parallelepiped) were chosen
taking the design and technological potential into account.

Analysis in Parallelepiped 11,

The number of trials was N=1,024. The large number of designer-computer
dialogues has allowed detailed analysis of the results obtained for different criteria
constraints, as well as detection of the design variations leading to a reduction
in the mass and improvements in the strength properties of the truck frame. The
results of the dialogues were used for compiling a test table representing the
most noteworthy models. Table 6-5 is a fragment of the latter. The first row in
Table 6-5 corresponds to the prototype, the values of its performance criteria
being given. The first column presents the 15 best models: 836, 596,..., 824.
The next three columns are occupied by pseudocriteria ®,, ®,, and 3 (the “+”
and “—" are the signs of deviations from the values corresponding to the prototype
frame). Finally, the performance criteria ®,—®- are presented. We see that for
the prototype frame the sheet thickness is ®5=6.35 mm, and the side rail mass
®,=104 kg. In Tables 6-5 and 6-6 ®5 corresponds to the rounded values of the
sheet thickness.

Since in constructing the Pareto optimal set pseudocriteria were ignored, each
dialogueresultedrinrconstructiomof a-feasible solutions set and determination of
the Pareto optimal models in the criteria ®,~®;.



Table 6—4

Design
variables Design Lower Upper Optimal
numbers variables boundary boundary Prototype model
1 D (mm) 5 10 6.35 5.5
2 H; (cm) 11.4 15.4 13.4 14
3 B, (cm) 5.4 7.4 5.7 5.6
4 Lg (cm) 185.6 205.6 185.6 196.5
5 Hjg (cm) 22.5 26.5 24 24.6
6 Bg (cm) 5.4 9.4 7.7 7.9
7 L3 (cm) 354.1 384.1 374.1 362.5
8 H,; (cm) 15.4 19.4 17.4 16.7
9 B, (cm) 5.4 7.4 5.7 6.8
10 Ls (cm) 100.6 120.6 110.6 106.4
11 Ly (cm) 454.6 494.6 474.6 459.8
12 IW, (cm*) 500 1,500 1,000 1,112
13 IT, (cm®* 50 200 113 113
14 IW, (cm*) 50 200 110 11
15 IT, (cm®) 10 100 20.5 13
16 IW5 (cm®) 50 200 110 145
17 IT; (cm® 10 100 20.5 34
18 IW, (cm*) 50 200 85.1 128
19 IT; (cm*) 10 100 25.5 40
20 IWs (cm*) 300 600 420 343
21 ITs (cm®) 100 300 180 256
Table 6-5
Criteria
®, b, o, s s @,
Models (%) (%) @3 %) (kg (mm) (kgf/cm?) (kgflcm?)
Prototype — — — 104 6.35 1,000 2,220
836 +7.9 +68 -7.1 92.7 5.68 875 2,217
596 ~8.8 +48  +1.5 97.5 5.83 958 1,928
716 -9.65 +73 -174 99.2 6.0 850 1,984
356 ~3.42 460 -9.7 94.9 5.75 817 2,356
504 -6.0 +6.0 -8.1 91.3 5.62 947 2,299
924 -12.9 +9.6 -6.7  100.8 6.13 856 2,089
436 -14.6 -0.8 -10.18  98.9 5.89 971 2,275
628 -145 +154 -11.94 939 5.9 866 2,314
708 +14.5 +153  +0.6 93.1 5.69 799 1,927
684 -17.9  +11.3 -15.7 96.2 6.04 932 2,354
56 +6.5 +6.7 —15 92.5 5.55 879 2,084
980 -7.82 +15.6 +18 94.1 5.85 916 2,036
20 -16.44 +35 —-626 953 5.78 894 2,125
564 -1623 +6.4 -19.7 96.9 5.86 910 2,381
824 -17.3 +6.1 —8.55  96.7 5.56 946 2,011

166
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Table 6-6

D, mm Models @, (%) @, (%) ®3(%) @, (kg &5 (mm) g (kgfiem?) @, (kgf/icm?)
244 -89 +52 -82 955 5.53 936 1,814
168 —35 427 +4 90 5.46 934 2,046
5.5 176 —44 +932 -15 94 5.44 897 1,824
20 -18 +4.7 +11 92 5.51 883 2,095
56 +6.48 +7.16 +3.03 91.2 5.48 925 2,067
74 -6 +3.64 —4 95.3 5.62 933 1,817
56 2 -57 +84 —-69 947 5.57 903 1,947
: 252 —46 +76 07 924 5.57 932 1,955
266 +32 +1.7 +75 934 5.59 870 2,018
62 —-97 +82  +27 946 5.74 950 2,071
% -84 -05 -25 948 5.65 992 1,912
5.7 142 -56 82 —46 953 5.71 858 1,823
238 -54 +77 -16 95.1 5.73 927 2,043
166 -3.7 +54  +58 935 5.68 912 2,080
89 -96 +67 ~134 98.6 5.82 886 1,698
58 1 -9 +49  -13 959 5.75 886 2,009
‘ 129 -73 +87 ~—1444 977 5.75 892 1,945
97  +5.03 +246 +12 97.1 5.77 823 1,969
13 -85 +867 -8 99 5.88 880 1,785
67 —88 +641 —55 98.1 5.93 930 1,920
59 37 —4 -1.5 +39 971 5.85 885 2,050
’ 53 —4 +7.9  +9.54 957 5.87 828 2,070
45 -3 ~0.85 +6.08 97.05 5.89 904 2,086
195 4041 +3.52 +4.58 96.7 5.93 821 2,095
6.0 7  —65 3.84 -33 989 6.01 872 2,012

The first designer-computer dialogue

For the pseudocriteria accounting for torsional and vertical and horizontal
bending deformations, the deviations from the prototype values ®% were limited
by 10%:

¢ ()=1.195, v=1,23.

This allowed ensuring proximity of the optimal design and the prototype stiffness
characteristics.

In what follows we consider the models whose mass is smaller than that of
the prototype (104 kg).

The-feasible-solutions-setscontained=11 models, 10 of which were Pareto
optimal.

The first dialogue resulted in selection of the five best models, 356, 504, 836,
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596, and 716, whose masses are considerably less, and the strength characteristics
better, than those of the prototype. However, the constraints on the frame stiffness
characteristics introduced previously, are rather stringent. Making them some-
what looser may result in the appearance of additional, no less interesting,
solutions.

Subsequently five more designer-computer dialogues were conducted, in which
the constraints on ®;(a), ®,(x), and P;(a) were weakened by as much as 20%,
and the torsional and horizontal-bending stresses did not exceed 1,200 kgf/cm?
and 2,300 kgf/cmz, respectively. As a result, the feasible solutions set was
extended.

Conclusions Concerning the Results of Analyzing Parallelepiped 11,

The main results are presented in Table 6-5 and have been analyzed from the
viewpoints of the criteria and the design variables. Preference was given to
models 836, 596, 716, 504, and 56, the first four of which proved to be the best
in almost all the dialogues. Model 56 is the only one ensuring comparatively
small stresses for a low side-rail mass.

For the remaining models (836, 596, 716, and 504) the sheet is thicker. Besides
model 684, the thickest sheet is used in model 716. Naturally, its advantage in
the mass, as compared with the prototype, is minimal.

The analysis of the best feasible models!® has allowed construction of a new
parallelepiped, Il,, II,CII;, in which 256 trials were conducted.

Analysis in Parallelepiped I1,

Two dialogues were conducted. Since torsional stresses satisfied the formulated
requirements for almost all the models, constraints were imposed on the hori-
zontal-bending stresses.

In all the dialogues, the constraints were imposed that prevent the frame
stiffness characteristics from exceeding by more than 10% those of the prototype.
In order to achieve a more significant reduction in the mass, the side-rail mass
was limited by 100 kg.

Conclusions Concerning the Results of Analyzing Parallelepiped I,

The search proved to be highly effective. Owing to the shrinkage of the search
zone, the results were substantially improved. Of primary importance are the
horizontal stresses reduction by 10% to 20% and an increase in the sheet thickness
for a lower side-rail mass.

The results of the analysis allowed compiling a table of the best models, a

15Since the illustrative material pertaining to'this chapter is extremely voluminous, only a small
fragment of it is presented here.
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fragment of which is presented in Table 6-6 where the models are arranged in
the order of increasing sheet thickness D. As to this design variable the models
were divided into six groups, with D=5.5 mm, 5.6 mm, 5.7 mm, 5.8 mm,
5.9 mm, and 6.0 mm (see the first column in Table 6-6). The second column
contains the numbers of the models. Next follow pseudocriteria ®;, ®,, P;,
and criteria ®,—®-.

It was found that the most promising models form three groups with the sheet
thickness D=5.5 mm, 5.8 mm, and 6.0 mm. This circumstance has allowed
choosing three models, 168, 1, and 7, subsequently subjected to further analysis.
Compared to the prototype, the models are characterized by lower horizontal-
bending stresses for acceptable side-rail masses and sheet thickness. The latter
effect was attained by increasing the flange width in the middle and rear portions
of the frame.

Model 168 was admitted to be the best one. Its design-variable vector as well
as the prototype design variables are presented in Table 6-4.

The General Conclusion

The major performance criteria of the frame have been considerably improved.
Among other things, the side-rail mass was reduced by 14 kg. The results of
optimization have been confirmed by road tests.

Thus, the mass of the frame whose characteristics were being improved by
traditional methods for 20 years, was reduced by 28 kg (Velikhov et al. 1986).
Simultaneously, the stresses in the critical locations were reduced.

This example demonstrates the efficiency of multicriteria optimization in solv-
ing problems associated with mass production, as in the case of automotive
industry.

6-3. Optimization of Metal-Cutting Machine Tools

Let us consider some aspects of searching for optimal solutions in designing
metal-cutting machine tools.

Selection of the Optimal Design Variables of a Vertical Knee-Type
Milling Machine

In Gorodetskii (1984) a closed dynamic model of the title machine tool is consid-
ered. The specifics of its general design make the machine prone to forced and
self-sustained vibrations that limit its productivity and deteriorate the machining
quality. This study is aimed at shortening the time needed for designing new
millers characterized by improved vibration stability, machining accuracy, pro-
ductivityssand,other technological;and,economic indices.

Figure 6-4 shows schematically the structure of a vertical knee-type milling
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Figure 6-4 Schematic of the structure of a vertical knee-type milling machine.

machine. The knee, the slide, the table with a mounted part, and the swivel head
with the upper portion of the column (whose end faces are dashed) were modeled
by rigid (undeformable) bodies. Up to point A the column is considered a hollow
rectangular;beam: The: flexural-torsional:deformations of the column caused by
low-frequency vibration are supposed to be qualitatively analogous to static
deformations of the beam. This has allowed expressing the point A displacement
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via the beam’s angular rotations and using the angular displacements as general-
ized coordinates. The column mass was reduced to point A.

The following factors were considered: the stiffnesses and the deformations
in the column, the table and the slide drives, lifting mechanism, the knee supports,
and the column base and the knee-column joints. The specifics of natural vibration
in the latter two joints of the miller made it possible to take into account only
the stiffness coefficients associated with angular displacements with respect to
its axes.

In line with the adopted scheme of calculation the generalized mathematical
model (the equations of motion) of the miller’s closed dynamic system may be
written in the following operator form:

{IM]p*+[Nlp+[R]+(T{§1—e P [TED} [A]=[M] (6-5)

where [M], [N], and [R] are, respectively, the matrices of the inertial, dissipative,
and stiffness coefficients of a miller; [Fgf] and [Fgﬁ] are the matrices of averaged
(over a period) dynamic characteristics (the transfer functions) of milling; [A]
is the generalized coordinates vector; [M] is the vector of cutting force moments;
t=(nz)"!, n is the frequency of revolution; and z is the number of mill teeth.

The set of design variables included the dimensions of the equivalent cross
sections of the column, the fixed column-base joint and the movable knee-column
joint, as well as the stiffnesses of the lifting mechanism and the knee supports
and the distances from the column face.

The quality of the machine tool was estimated using the following five criteria:
the amplitudes of the mill-workpiece relative vibrations in the directions of the
table, slide, and knee feeds, denoted by P, ®,, and P respectively; the recipro-
cal of the limiting mill depth, ®4, and the metal consumption, ®s.

The algorithm of searching for the optimal solutions was based on the use of
the PSI method and consecutive implementation of the following operations at
each point of the design-variable space:

1. Calculation of natural frequencies w; with the help of the characteristic
equation of an open-loop conservative system.
det{[M]p*+[R]}=0, p=jo (6-6)
2. Calculation of the natural modes of vibration [A;] corresponding to
natural frequencies w;, carried out using the conservative model ([N]=0).
3. Calculation of forced vibration of the structure for each natural (reso-
nance) frequency o; in the cutting zone, using the equation
{M]p*+[NIp+[RI} [A]=[M], p=je (6-7)
4. Calculation of the milling depth starting from which self-sustained vibra-
tion_sets_in_(the depth is_called limiting, and is calculated using Eq.
(6-5))

5. Calculation of the metal consumption.
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Next we present the results of optimization of a vertical knee-type milling
machine, aimed at decreasing the latter’s resonance amplitudes and increasing
vibration stability (accompanied by a decrease in the metal consumption).

The analysis has been carried out for the case of symmetric longitudinal milling
with a face milling cutter. The specimens of width B=100 mm were made of
steel 45; the milling cutter frequency of revolution n equaled 160 rpm, and the
feed S,=0.125 mm per revolution. The problem was solved using mathematical
model (6-5) of a closed dynamic system of a machine tool with a matrix of
period-averaged dynamic characteristics of the milling process.

The set of design variables of the structure incorporated the dimensions of the
movable knee-column joint, a;, ay, a3, and oy; the geometry of the fixed column-
base joint, as, o6, 07, and ag; the ordinate of the point of application of the
knee feed mechanism force, ay; the stiffness of the knee lifting mechanism, ag;
the knee supports ordinate o;;; the knee support stiffness a;,; and the geometry
of the equivalent cross section of the column, a3, 014, and ;5 (see Fig. 6-4).

The calculation of particular criteria ®,-®s at each trial point required a great
deal of computer time. Therefore, first the spectrum of natural frequencies and
the objective functions ®, were analyzed.

Then the limiting milling depth was calculated for each natural frequency.
The solution of the general problem was reduced to the analysis of the machine
tool’s dynamic quality over a limited set of potentially unstable modes of vi-
bration.

Preliminary calculations have yielded the spectrum of natural frequencies and
the limiting milling depths for the prototype machine tool over the range of
frequencies from zero to 200 Hz. It was found that for 28 Hz, 87 Hz, and 147
Hz the machine tool had a substantial stability margin; however, for 58 Hz
and 75 Hz milling became unstable for the depths of 10.8 mm and 3.3 mm,
respectively.

The performance criteria were calculated using a system of modal equations
derived by energy methods for the second and the third natural frequencies.

For the frequencies of 58 Hz and 75 Hz, 11 and 22 models were included
into the feasible domain, respectively. The best models were found within the
intersection of the optimal models sets obtained for the two frequencies. The
values of their particular criteria are presented in Table 6-7.

Subsequent analysis has shown that the models correspond to substantially
better values of the performance criteria as compared with the prototype. Thus,

Table 6-7
Models ®; (um) @, (pm) ®; (pm) @, (m") s (kg)
17 6.74 23.4 16.7 39.6 3,340
26 15.5 61.8 42.8 84.3 3,330

59 18.7 19.3 13.7 60.7 3,380
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for model 59 the limiting milling depth increased by approximately a factor of
five, and the metal consumption decreased by 7%.

The analysis has allowed formulation of a number of general statements and
concrete recommendations for improving vertical milling machines:

1. The oscillations were suppressed mainly owing to an increase in the
flexural-torsional stiffness of the lower portion of the column and in the
stiffnesses of the lifting mechanism, the knee support, and the column-
base joint.

2. The metal consumption was reduced by optimizing the geometric vari-
ables of the basic units cross sections.

3. The dynamic quality indexes of vertical NC millers may be improved
by passing from knee-type to compound-table milling machines.

Besides, the time needed for finding the optimal solution characterized by
enhanced vibration stability, lower level of forced vibration, and lower metal
consumption, has been considerably decreased.

Determination of Significant Design Variables in Optimizing the Structures of
Lathes with Movable Workheads (Betin and Kaminskaya 1992)

Figure 6-5 shows the scheme used for calculation of the structure of a precision
lathe. A finite element beam model of the machine tool was considered. The
bed, spindle head, carriage, chuck, and pneumatic cylinder were assumed to be
rigid bodies.

The scheme of the structure incorporates two subsystems: the carriage and the
spindle head. By M; we denote the ith inertial element possessing both mass and
the moment of inertia. The joints and supports are denoted by K; and J; and are
characterized by linear and angular stiffnesses of the corresponding structural
elements of the machine tool. Within the framework of the finite element model
of the machine tool under consideration the spindle is represented by beams.

Optimization criteria include the stresses in the guideways and the static and
dynamic compliances.

Selection of significant design variables

As noted in Section 5-2, design variables are the variables that have the greatest
effect on the performance criteria. The analysis allowed finding the distributions
of kinetic and potential energies of vibration among the lathe elements for the
natural frequencies equal to 181 Hz and 387 Hz (for the prototype). For the
frequencies 181-Hz-and 387 Hz the.majorkinetic energy component is determined
by the spindle head (64%) and the chuck (68%) vibrations, respectively. For the
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frequency 181 Hz, 80% of the total potential energy correspond to the spindle
head vibration (mainly the angular ones with respect to the axis Z), and only
6.5% to translational vibration of the carriage proceeding in the feed direction.
For 387 Hz, 58% correspond to the chuck vibration. The contributions of the
remaining elements into the kinetic and potential energies were insignificant.

L~

j1'l

?

777 7

Figure 6-5 Scheme used for calculating the structure of a precision lathe. The elements

and notation. Inertial elements ‘ : M, is the spindle head; M, the carriage; M; the

chuck; M, the spindle housing; M5 the pneumatic cylinder; Mg the bracket; M, the motor

stator; Mg the motor rotor; My the bed. Stiffness elements A\, : k; refers to the

spindle head-bed pair; k, to carriage-bed; k3 to chuck-spindle; &, to spindle head—spindle
housing; ks to spindle-pneumatic cylinder; kg to bracket-bed; k; to stator-bracket; kg to
stator-rotor; kg to stator—spindle head; ko to the belt transmission; k;, and k;, to the

spindle bearings. % J1, j2, and j; are the machine tool supports. Finite element

beam model: | c————m | is the spindle.




Examples of Multicriteria Optimization of Machines | 175

Therefore, in solving the optimization problem the parameters related to these
elements were not varied. Thus, it is clear that for the frequency 387 Hz the
dynamic characteristics of the system may be primarily changed by varying the
chuck parameters. Thus, in optimizing the design variables of the structure
attention must be concentrated on improving the compliance determined by the
spindle and carriage parameters. The analysis of the data on the kinetic and
potential energy distribution, as well as of the shape of the structure’s vibration
at the frequency of 181 Hz, shows that the level of relative vibration within the
cutting zone depends on the magnitude and direction of the spindle head angular
vibratory displacements and translational vibratory displacements of the carriage.

In line with what was said previously, the following nine parameters were
varied: the mass of the spindle head and carriage, the stiffness of the carriage
feed drive, and the geometric variables of the main faces of the spindle guideways.
The latter geometric variables determine the stiffness of the spindle head
guideways.

The results of optimization (following N=1,024 trials) are presented in Table
6-8 where the values of dynamic compliances are presented only for natural
frequencies. For the model 70 and the prototype the natural frequencies lie outside
the range of frequencies 270 Hz-350 Hz.

Let us summarize the major results of the study.

1. As regards the dynamic compliance, models 484 and 627 are the best
ones over the entire frequency range. A still higher dynamic compliance
of model 70 is explained by the proximity of the partial frequencies of
the head and the carriage, while for model 302 it is explained by a low
stiffness of the carriage feed drive.

2. For the most preferred models, 484 and 627, the design variable values
are such that for the lower and the upper natural frequencies the vibrations
of the carriage and the head dominate, respectively.

Table 6-8

Performance criteria

Dynamic compliance over the

Pre'ssure in Statilc frequency range (10.3 mm/N)
guideways compliance
Models (1075 kgfcm?) (10* mnYN) [170-240] Hz [240-350] Hz
70 33,000 0.69 0.185 —
138 45,800 0.68 0.109 0.219
302 41,500 0.70 0.115 0.175
484 43,400 0.68 0.161 0.139
522 54,000 0.67 0.127 0.307
627 50,200 0.68 0.159 0.122

Prototype 77,900 0.75 0.212 —
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The analysis has revealed a strong dependence of the dynamic compliance
within the cutting zone on the relationship between the partial frequencies of the
spindle head, the carriage, and the chuck vibrations. For the best solutions the
frequencies differ by 30%-35%.

These results allow formulation of two general recommendations for decreasing
the dynamic compliance of the structure:

1. The stiffnesses of the head guideways and the carriage feed drive must
be made sufficiently large (within the fixed overall dimensions)

2. The inertial characteristics of the elements must ensure the corresponding
relationships between the partial frequencies for the chosen values of
the elements stiffnesses.

Other Studies in Machine Tools Optimization

In Sections 4-3 and 5-3 we discussed some studies aimed at optimization of
slotting and grinding machines. Here we present some more interesting studies
in the area, based on the PSI method.

Design of the structure of a multipurpose single-column vertical boring and
turning machine

It was necessary to design a machine tool surpassing the prototype in the basic
performance criteria. The two specific features of the problem are the high
dimensionality of the design-variable vector and calculations taking a great deal
of computer time. The latter was reduced by using multicriteria identification.
The cross section of the machine’s column had a complicated configuration and
was described by a large number of design variables. In order to reduce the latter
the column cross section was simplified, and the adequacy of the real a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>